Comptes Rendus
Functional analysis/Probability theory
Equicontinuous families of Markov operators in view of asymptotic stability
Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1247-1251.

The relation between the equicontinuity – the so-called e-property – and the stability of Markov operators is studied. In particular, it is shown that any asymptotically stable Markov operator with an invariant measure such that the interior of its support is non-empty satisfies the e-property.

Nous étudions la relation entre l'équicontinuite – la dite e-propriété – et la stabilité d'opérateurs de Markov. En particulier, nous montrons que tout opérateur markovien asymptotiquement stable, avec une mesure invariante telle que l'intérieur de son support est non vide, satisfait la e-propriété.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.10.019

Sander Cornelis Hille 1; Tomasz Szarek 2; Maria Aleksandra Ziemlańska 1

1 Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
2 Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
@article{CRMATH_2017__355_12_1247_0,
     author = {Sander Cornelis Hille and Tomasz Szarek and Maria Aleksandra Ziemla\'nska},
     title = {Equicontinuous families of {Markov} operators in view of asymptotic stability},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1247--1251},
     publisher = {Elsevier},
     volume = {355},
     number = {12},
     year = {2017},
     doi = {10.1016/j.crma.2017.10.019},
     language = {en},
}
TY  - JOUR
AU  - Sander Cornelis Hille
AU  - Tomasz Szarek
AU  - Maria Aleksandra Ziemlańska
TI  - Equicontinuous families of Markov operators in view of asymptotic stability
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1247
EP  - 1251
VL  - 355
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2017.10.019
LA  - en
ID  - CRMATH_2017__355_12_1247_0
ER  - 
%0 Journal Article
%A Sander Cornelis Hille
%A Tomasz Szarek
%A Maria Aleksandra Ziemlańska
%T Equicontinuous families of Markov operators in view of asymptotic stability
%J Comptes Rendus. Mathématique
%D 2017
%P 1247-1251
%V 355
%N 12
%I Elsevier
%R 10.1016/j.crma.2017.10.019
%G en
%F CRMATH_2017__355_12_1247_0
Sander Cornelis Hille; Tomasz Szarek; Maria Aleksandra Ziemlańska. Equicontinuous families of Markov operators in view of asymptotic stability. Comptes Rendus. Mathématique, Volume 355 (2017) no. 12, pp. 1247-1251. doi : 10.1016/j.crma.2017.10.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.019/

[1] D. Czapla A criterion of asymptotic stability for Markov–Feller e-chains on Polish spaces, Ann. Pol. Math., Volume 105 (2012) no. 3, pp. 267-291

[2] D. Czapla; K. Horbacz Equicontinuity and stability properties of Markov chains arising from iterated function systems on Polish spaces, Stoch. Anal. Appl., Volume 32 (2014) no. 1, pp. 1-29

[3] A. Es-Sarhir; M.K. von Renesse Ergodicity of stochastic curve shortening flow in the plane, SIAM J. Math. Anal., Volume 44 (2012) no. 1, pp. 224-244

[4] S.N. Ethier; T.G. Kurtz Markov Processes: Characterization and Convergence, Wiley, New York, 1985

[5] F.Z. Gong; Y. Liu Ergodicity and asymptotic stability of Feller semigroups on Polish metric spaces, Sci. China Math., Volume 58 (2015) no. 6, pp. 1235-1250

[6] B. Jamison Asymptotic behaviour of successive iterates of continuous functions under a Markov operator, J. Math. Anal. Appl., Volume 9 (1964), pp. 203-214

[7] T. Komorowski; S. Peszat; T. Szarek On ergodicity of some Markov operators, Ann. Probab., Volume 38 (2010) no. 4, pp. 1401-1443

[8] A. Lasota; T. Szarek Lower bound technique in the theory of a stochastic differential equations, J. Differ. Equ., Volume 231 (2006), pp. 513-533

[9] J. Li; S. Tu; X. Ye Mean equicontinuity and mean sensitivity, Ergod. Theory Dyn. Syst., Volume 35 (2015) no. 8, pp. 2587-2612

[10] S.P. Meyn; R.L. Tweedie Markov Chains and Stochastic Stability, Cambridge University Press, Cambridge, UK, 2009

[11] Ł. Stettner Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Pol. Acad. Sci., Math., Volume 42 (1994) no. 2, pp. 103-114

[12] T. Szarek; D.T.H. Worm Ergodic measures of Markov semigroups with the e-property, Ergod. Theory Dyn. Syst., Volume 32 (2012) no. 3, pp. 1117-1135

[13] S. Wȩdrychowicz; A. Wiśnicki On some results on the stability of Markov operators, Stud. Math. (2017) (in press) | DOI

[14] D.T.H. Worm Semigroups on Spaces of Measures, Leiden University, Leiden, The Netherlands, 2010 (PhD thesis)

[15] R. Zaharopol Invariant Probabilities of Transition Functions, Probability and Its Applications, Springer, Cham, Switzerland, 2014

Cited by Sources:

The work of Maria Aleksandra Ziemlańska has been partially supported by a Huygens Fellowship of Leiden University. The work of Tomasz Szarek has been supported by the National Science Centre of Poland, grant number 2016/21/B/ST1/00033.

Comments - Policy