Comptes Rendus
Ordinary differential equations
On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses
[Sur la dépendance orbitale de Hausdorff des équations différentielles avec impulsions non instantanées]
Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 150-171.

Nous étudions ici la dépendance orbitale de Hausdorff continue des solutions des équations différentielles d'ordre entier ou fractionnaire, non linéaires avec impulsion non instantanée. Le concept de dépendance orbitale de Hausdorff continue est utilisé pour évaluer la distance de Hausdorff entre les solutions correspondant aux points d'impulsion et de jonction. Nous montrons ensuite des conditions suffisantes garantissant cette dépendance continue spécifique sur leurs trajectoires respectives. Finalement, nous donnons deux exemples qui illustrent nos résultats théoriques.

In this article, we investigate the orbital Hausdorff continuous dependence of the solutions to integer order and fractional nonlinear non-instantaneous differential equations. The concept of orbital Hausdorff continuous dependence is used to characterize the relations of solutions corresponding to the impulsive points and junction points in the sense of the Hausdorff distance. Then, we establish sufficient conditions to guarantee this specific continuous dependence on their respective trajectories. Finally, two examples are given to illustrate our theoretical results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.01.001
Dan Yang 1 ; JinRong Wang 1 ; Donal O'Regan 2

1 Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China
2 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
@article{CRMATH_2018__356_2_150_0,
     author = {Dan Yang and JinRong Wang and Donal O'Regan},
     title = {On the orbital {Hausdorff} dependence of differential equations with non-instantaneous impulses},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {150--171},
     publisher = {Elsevier},
     volume = {356},
     number = {2},
     year = {2018},
     doi = {10.1016/j.crma.2018.01.001},
     language = {en},
}
TY  - JOUR
AU  - Dan Yang
AU  - JinRong Wang
AU  - Donal O'Regan
TI  - On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 150
EP  - 171
VL  - 356
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2018.01.001
LA  - en
ID  - CRMATH_2018__356_2_150_0
ER  - 
%0 Journal Article
%A Dan Yang
%A JinRong Wang
%A Donal O'Regan
%T On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses
%J Comptes Rendus. Mathématique
%D 2018
%P 150-171
%V 356
%N 2
%I Elsevier
%R 10.1016/j.crma.2018.01.001
%G en
%F CRMATH_2018__356_2_150_0
Dan Yang; JinRong Wang; Donal O'Regan. On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 150-171. doi : 10.1016/j.crma.2018.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.001/

[1] S. Abbas; M. Benchohra Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses, Appl. Math. Comput., Volume 257 (2015), pp. 190-198

[2] R.P. Agarwal; M. Benchohra; S. Hamani A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., Volume 109 (2010), pp. 973-1033

[3] R. Agarwal; D. O'Regan; S. Hristova Stability with initial time difference of Caputo fractional differential equations by Lyapunov functions, Z. Anal. Anwend., Volume 36 (2017), pp. 49-77

[4] R. Agarwal; D. O'Regan; S. Hristova Monotone iterative technique for the initial value problem for differential equations with non-instantaneous impulses, Appl. Math. Comput., Volume 298 (2017), pp. 45-56

[5] M.U. Akhmet; J. Alzabut; A. Zafer Perron's theorem for linear impulsive differential equations with distributed delay, J. Comput. Appl. Math., Volume 193 (2006), pp. 204-218

[6] L. Bai; J.J. Nieto Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., Volume 73 (2017), pp. 44-48

[7] D.D. Bainov; P.S. Simeonov Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, vol. 28, World Scientific, Singapore, 1995

[8] M. Benchohra; J. Henderson; S.K. Ntouyas Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, 2006

[9] P. Chen; Y. Li; H. Yang Perturbation method for nonlocal impulsive evolution equations, Nonlinear Anal. Hybrid Syst., Volume 8 (2013), pp. 22-30

[10] V. Colao; L. Muglia; H.K. Xu An existence result for a new class of impulsive functional differential equations with delay, J. Math. Anal. Appl., Volume 441 (2016), pp. 668-683

[11] J. Diblík Positive solutions of nonlinear delayed differential equations with impulses, Appl. Math. Lett., Volume 72 (2017), pp. 16-22

[12] A. Dishliev; K. Dishlieva; S. Nenov Specific Asymptotic Properties of the Solutions of Impulsive Differential Equations: Methods and Applications, Academic Publication, 2012

[13] K. Dishlieva; A. Antonov Hausdorff Metric and Differential Equations with Variable Structure and Impulses, Technical University of Sofia, Bulgaria, 2015

[14] Z. Fan; G. Li Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., Volume 258 (2010), pp. 1709-1727

[15] G.R. Gautam; J. Dabas Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses, Appl. Math. Comput., Volume 259 (2015), pp. 480-489

[16] E. Hernández; D. O'Regan On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., Volume 141 (2013), pp. 1641-1649

[17] E. Hernández; M. Pierri; D. O'Regan On abstract differential equations with non instantaneous impulses, Topol. Methods Nonlinear Anal., Volume 46 (2015), pp. 1067-1085

[18] A.A. Kilbas; H.M. Srivastava; J.J. Trujillo Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006

[19] H. Leiva Controllability of semilinear impulsive nonautonomous systems, Int. J. Control, Volume 88 (2015), pp. 585-592

[20] S. Liu; A. Debbouche; J. Wang On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths, J. Comput. Appl. Math., Volume 312 (2017), pp. 47-57

[21] M. Muslim; A. Kumar; M. Fečkan Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Univ. (2016) | DOI

[22] M. Pierri; H.R. Henríquez; A. Prokczyk Global solutions for abstract differential equations with non-instantaneous impulses, Mediterr. J. Math., Volume 34 (2016), pp. 1685-1708

[23] M. Pierri; D. O'Regan; V. Rolnik Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., Volume 219 (2013), pp. 6743-6749

[24] A.M. Samoilenko; N.A. Perestyuk Impulsive Differential Equations, World Scientific, 1995

[25] B. Sendov Hausdorff Approximations, Springer Science and Business, Media, 1990

[26] I. Stamova; G. Stamov Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, CRC Press, 2017

[27] J. Sun; J. Chu; H. Chen Periodic solution generated by impulses for singular differential equations, J. Math. Anal. Appl., Volume 404 (2013), pp. 562-569

[28] J. Wang Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., Volume 73 (2017), pp. 157-162

[29] J. Wang; M. Fečkan A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal., Volume 46 (2015), pp. 915-934

[30] J. Wang; M. Fečkan; Y. Tian Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediterr. J. Math., Volume 14 (2017)

[31] J. Wang; M. Fečkan; Y. Zhou A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., Volume 19 (2016), pp. 806-831

[32] J. Wang; Y. Zhou; M. Fečkan Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., Volume 64 (2012), pp. 3389-3405

[33] J. Wang; Y. Zhou; Z. Lin On a new class of impulsive fractional differential equations, Appl. Math. Comput., Volume 242 (2014), pp. 649-657

[34] D. Yang; J. Wang Non-instantaneous impulsive fractional-order implicit differential equations with random effects, Stoch. Anal. Appl., Volume 35 (2017), pp. 719-741

[35] D. Yang; J. Wang; D. O'Regan Asymptotic properties of the solutions of nonlinear non-instantaneous impulsive differential equations, J. Franklin Inst., Volume 354 (2017), pp. 6978-7011

[36] X. Yuan; Y.H. Xia; D. O'Regan Nonautonomous impulsive systems with unbounded nonlinear terms, Appl. Math. Comput., Volume 245 (2014), pp. 391-403

[37] G.L. Zhang; M.H. Song; M.Z. Liu Exponential stability of the exact solutions and the numerical solutions for a class of linear impulsive delay differential equations, J. Comput. Appl. Math., Volume 285 (2015), pp. 32-44

Cité par Sources :

The authors acknowledge the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), and Unite Foundation of Guizhou Province ([2015]7640).

Commentaires - Politique


Ces articles pourraient vous intéresser

Eigenvalue problems with sign-changing coefficients

Camille Carvalho; Lucas Chesnel; Patrick Ciarlet

C. R. Math (2017)


Bridging meso- and microscopic anisotropic unilateral damage formulations for microcracked solids

Qi-Zhi Zhu; Shuang-Shuang Yuan; Jian-fu Shao

C. R. Méca (2017)


Error estimates for stabilized finite element methods applied to ill-posed problems

Erik Burman

C. R. Math (2014)