On a bounded domain Ω in the Euclidean space , we study the homogeneous Dirichlet problem for the eikonal equation associated with a system of smooth vector fields, which satisfies Hörmander's bracket generating condition. We prove that the solution is smooth in the complement of a closed set of Lebesgue measure zero.
Soit Ω un ouvert borné à bord lisse de . Nous étudions le problème de Dirichlet homogène sur Ω pour l'équation eikonale associée à un système de champs de vecteurs qui satisfait la condition de Hörmander. Nous montrons que la solution de ce problème est régulière dans le complémentaire d'un ensemble fermé de mesure de Lebesgue nulle.
Accepted:
Published online:
Paolo Albano 1; Piermarco Cannarsa 2; Teresa Scarinci 3
@article{CRMATH_2018__356_2_172_0, author = {Paolo Albano and Piermarco Cannarsa and Teresa Scarinci}, title = {Partial regularity for solutions to subelliptic eikonal equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {172--176}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2018.01.003}, language = {en}, }
TY - JOUR AU - Paolo Albano AU - Piermarco Cannarsa AU - Teresa Scarinci TI - Partial regularity for solutions to subelliptic eikonal equations JO - Comptes Rendus. Mathématique PY - 2018 SP - 172 EP - 176 VL - 356 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2018.01.003 LA - en ID - CRMATH_2018__356_2_172_0 ER -
Paolo Albano; Piermarco Cannarsa; Teresa Scarinci. Partial regularity for solutions to subelliptic eikonal equations. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 172-176. doi : 10.1016/j.crma.2018.01.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.003/
[1] Compactness for sub-Riemannian length-minimizers and subanalyticity, Rend. Semin. Mat. Univ. Politec. Torino, Volume 56 (1998) no. 4, pp. 1-12
[2] On the cut locus of a closed set, Nonlinear Anal., Volume 125 (2015), pp. 398-405
[3] Regularity results for the minimum time function with Hörmander vector fields, J. Differ. Equ., Volume 264 (2018) no. 5, pp. 3312-3335
[4] Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Leningrad State Univ. Ann. [Uč. Zap.] Math. Ser., Volume 6 (1939), pp. 3-35 (Russian)
[5] Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser Boston, Inc., Boston, MA, USA, 1997
[6] Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, vol. 58, Birkhäuser Boston, Inc., Boston, MA, USA, 2004
[7] Conjugate times and regularity of the minimum time function with differential inclusions, Analysis and Geometry in Control Theory and Its Applications, Springer INdAM Ser., vol. 11, Springer, Cham, Switzerland, 2015, pp. 85-110
[8] Local regularity of the minimum time function, J. Optim. Theory Appl., Volume 164 (2015) no. 1, pp. 68-91
[9] Hypographs satisfying an external sphere condition and the regularity of the minimum time function, J. Math. Anal. Appl., Volume 372 (2010) no. 2, pp. 611-628
[10] Rectifiability results for singular and conjugate points of optimal exit time problems, J. Math. Appl., Volume 270 (2002) no. 2, pp. 681-708
[11] Morse–Sard type results in sub-Riemannian geometry, Math. Ann., Volume 332 (2005) no. 1, pp. 145-159
[12] Optimal control theory and piecewise analyticity of the distance function for some real-analytic sub-Riemannian metrics, Haifa, 1990 (Pitman Res. Notes Math. Ser.), Volume vol. 244, Longman Sci. Tech., Harlow, UK (1992), pp. 298-310
[13] Global subanalytic solutions of Hamilton–Jacobi type equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 3, pp. 363-387
Cited by Sources:
Comments - Policy