We study the motion of a visco-elastic solid with large deformations. We prove the existence of a local-in-time motion and of a non-negative pressure, which is a measure reaction to the incompressibility condition.
On étudie le mouvement d'un solide viscoélastique incompressible en grande déformation. On démontre l'existence d'un mouvement local en temps et d'une pression positive qui est une mesure, réaction à la condition d'incompressibilité.
Accepted:
Published online:
Elena Bonetti 1, 2; Michel Frémond 3
@article{CRMATH_2018__356_3_345_0, author = {Elena Bonetti and Michel Fr\'emond}, title = {Motion of an incompressible solid with large deformations}, journal = {Comptes Rendus. Math\'ematique}, pages = {345--350}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2018.01.016}, language = {en}, }
Elena Bonetti; Michel Frémond. Motion of an incompressible solid with large deformations. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 345-350. doi : 10.1016/j.crma.2018.01.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.016/
[1] The motion of a solid with large deformations, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 579-583
[2] 2D motion with large deformations, Boll. UMI, Volume 7 (2014), pp. 19-44
[3] The 3D motion of a solid with large deformations, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 183-187
[4] On the strongly damped wave equation with constraint, Commun. Partial Differ. Equ., Volume 42 (2017) no. 7, pp. 1042-1064
[5] Collisions, Edizioni del Dipartimento di Ingegneria Civile dell'Università di Roma Tor Vergata, Roma, 2007 (ISBN: 978-88-6296-000-7)
[6] Virtual Work and Shape Change in Solid Mechanics, Springer Ser. Solid Struct. Mech., vol. 7, Springer-Verlag, Berlin, Heidelberg, Germany, 2017
[7] Principes extrémaux pour le problème de la naissance de la cavitation, J. Méc., Volume 5 (1966), pp. 439-470
Cited by Sources:
Comments - Policy