Comptes Rendus
Mathematical problems in mechanics
Motion of an incompressible solid with large deformations
Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 345-350.

We study the motion of a visco-elastic solid with large deformations. We prove the existence of a local-in-time motion and of a non-negative pressure, which is a measure reaction to the incompressibility condition.

On étudie le mouvement d'un solide viscoélastique incompressible en grande déformation. On démontre l'existence d'un mouvement local en temps et d'une pression positive qui est une mesure, réaction à la condition d'incompressibilité.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.01.016

Elena Bonetti 1, 2; Michel Frémond 3

1 Laboratorio Lagrange, Dipartimento di Matematica “Federigo Enriques”, Università di Milano, Via Saldini, 50, 20133 Milano, Italy
2 IMATI–CNR, Via Ferrata 1, 27100, Pavia, Italy
3 Laboratorio Lagrange, Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma “Tor Vergata”, Via del Politecnico, 1, 00163 Roma, Italy
@article{CRMATH_2018__356_3_345_0,
     author = {Elena Bonetti and Michel Fr\'emond},
     title = {Motion of an incompressible solid with large deformations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {345--350},
     publisher = {Elsevier},
     volume = {356},
     number = {3},
     year = {2018},
     doi = {10.1016/j.crma.2018.01.016},
     language = {en},
}
TY  - JOUR
AU  - Elena Bonetti
AU  - Michel Frémond
TI  - Motion of an incompressible solid with large deformations
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 345
EP  - 350
VL  - 356
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2018.01.016
LA  - en
ID  - CRMATH_2018__356_3_345_0
ER  - 
%0 Journal Article
%A Elena Bonetti
%A Michel Frémond
%T Motion of an incompressible solid with large deformations
%J Comptes Rendus. Mathématique
%D 2018
%P 345-350
%V 356
%N 3
%I Elsevier
%R 10.1016/j.crma.2018.01.016
%G en
%F CRMATH_2018__356_3_345_0
Elena Bonetti; Michel Frémond. Motion of an incompressible solid with large deformations. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 345-350. doi : 10.1016/j.crma.2018.01.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.016/

[1] E. Bonetti; P. Colli; M. Frémond The motion of a solid with large deformations, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 579-583

[2] E. Bonetti; P. Colli; M. Frémond 2D motion with large deformations, Boll. UMI, Volume 7 (2014), pp. 19-44

[3] E. Bonetti; P. Colli; M. Frémond The 3D motion of a solid with large deformations, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 183-187

[4] E. Bonetti; E. Rocca; R. Scala; G. Schimperna On the strongly damped wave equation with constraint, Commun. Partial Differ. Equ., Volume 42 (2017) no. 7, pp. 1042-1064

[5] M. Frémond Collisions, Edizioni del Dipartimento di Ingegneria Civile dell'Università di Roma Tor Vergata, Roma, 2007 (ISBN: 978-88-6296-000-7)

[6] M. Frémond Virtual Work and Shape Change in Solid Mechanics, Springer Ser. Solid Struct. Mech., vol. 7, Springer-Verlag, Berlin, Heidelberg, Germany, 2017

[7] J.J. Moreau Principes extrémaux pour le problème de la naissance de la cavitation, J. Méc., Volume 5 (1966), pp. 439-470

Cited by Sources:

Comments - Policy