We prove that if , then the spaces and are isomorphic if and only if . In particular, and are not isomorphic, which is an answer to a question formulated in [2].
Nous prouvons que si , alors les espaces et sont isomorphes si et seulement si . En particulier, et ne sont pas isomorphes, ce qui est une réponse à une question formulée dans [2].
Accepted:
Published online:
Sergey V. Astashkin 1; Lech Maligranda 2
@article{CRMATH_2018__356_6_661_0, author = {Sergey V. Astashkin and Lech Maligranda}, title = {\protect\emph{L}\protect\textsubscript{\protect\emph{p}} + \protect\emph{L}\protect\textsubscript{\protect\emph{q}} and {\protect\emph{L}\protect\textsubscript{\protect\emph{p}} \ensuremath{\cap} \protect\emph{L}\protect\textsubscript{\protect\emph{q}}} are not isomorphic for all 1 \ensuremath{\leq} \protect\emph{p},\protect\emph{q} \ensuremath{\leq} \ensuremath{\infty}, \protect\emph{p} \ensuremath{\neq} \protect\emph{q}}, journal = {Comptes Rendus. Math\'ematique}, pages = {661--665}, publisher = {Elsevier}, volume = {356}, number = {6}, year = {2018}, doi = {10.1016/j.crma.2018.04.019}, language = {en}, }
Sergey V. Astashkin; Lech Maligranda. Lp + Lq and Lp ∩ Lq are not isomorphic for all 1 ≤ p,q ≤ ∞, p ≠ q. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 661-665. doi : 10.1016/j.crma.2018.04.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.019/
[1] Topics in Banach Space Theory, Springer-Verlag, New York, 2006
[2] and are not isomorphic for all , Proc. Amer. Math. Soc., Volume 146 (2018) no. 5, pp. 2181-2194
[3] Interpolation of Operators, Academic Press, Boston, 1988
[4] Interpolation Spaces. An Introduction, Springer-Verlag, Berlin–New York, 1976
[5] Some Banach space embeddings of classical function spaces, Bull. Aust. Math. Soc., Volume 43 (1991) no. 1, pp. 73-77
[6] Intersection of Lebesgue spaces and , Proc. Amer. Math. Soc., Volume 103 (1988) no. 4, pp. 1185-1188
[7] A scale of linear spaces related to the scale, Ill. J. Math., Volume 34 (1990) no. 1, pp. 140-158
[8] Interpolation of quasi-normed spaces, Math. Scand., Volume 26 (1970), pp. 177-199
[9] Symmetric structures in Banach spaces, Mem. Amer. Math. Soc., Volume 19 (1979) no. 217 (v+298 p)
[10] Convex Functions and Orlicz Spaces, Noordhoff, Groningen, The Netherlands, 1961
[11] Interpolation of Linear Operators, Amer. Math. Soc., Providence, RI, 1982
[12] Classical Banach Spaces, II. Function Spaces, Springer-Verlag, Berlin–New York, 1979
[13] The K-functional for symmetric spaces, Lect. Notes Math., Volume 1070 (1984), pp. 169-182
[14] Orlicz Spaces and Interpolation, Semin. Math., vol. 5, University of Campinas, Campinas, Brazil, 1989
[15] Theory of Orlicz Spaces, Marcel Dekker, New York, 1991
Cited by Sources:
Comments - Policy