We construct a vector bundle E on a smooth complex projective surface X with the property that the restriction of E to any smooth closed curve in X admits an algebraic connection while E does not admit any algebraic connection.
Nous construisons un fibré vectoriel E sur une surface complexe lisse X tel que la restriction de E à toute courbe lisse fermée contenue dans X admet une connexion algébrique, sans que E lui-même admette une telle connexion algébrique.
Accepted:
Published online:
Indranil Biswas 1, 2; Sudarshan Gurjar 3
@article{CRMATH_2018__356_6_674_0, author = {Indranil Biswas and Sudarshan Gurjar}, title = {Connections and restrictions to curves}, journal = {Comptes Rendus. Math\'ematique}, pages = {674--678}, publisher = {Elsevier}, volume = {356}, number = {6}, year = {2018}, doi = {10.1016/j.crma.2018.05.004}, language = {en}, }
Indranil Biswas; Sudarshan Gurjar. Connections and restrictions to curves. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 674-678. doi : 10.1016/j.crma.2018.05.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.05.004/
[1] Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 181-207
[2] On holomorphic principal bundles over a compact Riemann surface admitting a flat connection, Math. Ann., Volume 322 (2002), pp. 333-346
[3] On semistable principal bundles over a complex projective manifold, Int. Math. Res. Not. (2008)
[4] On the vector bundles over rationally connected varieties, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 1173-1176
[5] Restrictions of semistable bundles on projective varieties, Comment. Math. Helv., Volume 59 (1984), pp. 635-650
[6] Sur le mémoire de Weil. Généralisation des fonctions abéliennes, Séminaire Bourbaki, vol. 4, 1956, pp. 57-71 (talk No. 141)
[7] Cohomologie locale des faisceaux cohrénts et théorèmes de Lefschetz locaux et globaux, (SGA 2), Documents mathématiques (Paris), vol. 4, Société mathématique de France, Paris, 1968 | arXiv
[8] Ample Subvarieties of Algebraic Varieties, Lecture Notes in Mathematics, vol. 156, Springer-Verlag, Berlin, 1970
[9] A Noether–Lefschetz theorem and applications, J. Algebraic Geom., Volume 4 (1995), pp. 105-135
[10] On a differential-geometric method in the theory of analytic stacks, Proc. Natl. Acad. Sci. USA, Volume 39 (1953), pp. 1268-1273
[11] Semistable sheaves on projective varieties and their restriction to curves, Math. Ann., Volume 258 (1982), pp. 213-224
[12] Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci., Volume 75 (1992), pp. 5-95
[13] Généralisation des fonctions abéliennes, J. Math. Pures Appl., Volume 17 (1938), pp. 47-87
Cited by Sources:
Comments - Policy