Comptes Rendus
Functional analysis/Dynamical systems
On sofic groupoids and their full groups
Comptes Rendus. Mathématique, Volume 356 (2018) no. 9, pp. 957-962.

We prove that the class of sofic groupoids is stable under several measure-theoretic constructions. In particular, we show that virtually sofic groupoids are sofic. We answer a question of Conley, Kechris, and Tucker-Drob by proving that an aperiodic pmp groupoid is sofic if and only if its full group is metrically sofic.

Nous démontrons dans cette note que plusieurs constructions de théorie de la mesure préservent la classe des groupoïdes sofiques. En particulier, nous montrons qu'un sous-groupoïde virtuellement sofique est sofique. Nous répondons aussi à une question de Conley, Kechris et Tucker-Drob en démontrant que, pour qu'un groupoïde apériodique muni d'une mesure de probabilité invariante soit sofique, il est nécessaire et suffisant que son groupe plein soit métriquement sofique.

Published online:
DOI: 10.1016/j.crma.2018.07.003

Luiz Cordeiro 1

1 University of Ottawa, Canada
     author = {Luiz Cordeiro},
     title = {On sofic groupoids and their full groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {957--962},
     publisher = {Elsevier},
     volume = {356},
     number = {9},
     year = {2018},
     doi = {10.1016/j.crma.2018.07.003},
     language = {en},
AU  - Luiz Cordeiro
TI  - On sofic groupoids and their full groups
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 957
EP  - 962
VL  - 356
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2018.07.003
LA  - en
ID  - CRMATH_2018__356_9_957_0
ER  - 
%0 Journal Article
%A Luiz Cordeiro
%T On sofic groupoids and their full groups
%J Comptes Rendus. Mathématique
%D 2018
%P 957-962
%V 356
%N 9
%I Elsevier
%R 10.1016/j.crma.2018.07.003
%G en
%F CRMATH_2018__356_9_957_0
Luiz Cordeiro. On sofic groupoids and their full groups. Comptes Rendus. Mathématique, Volume 356 (2018) no. 9, pp. 957-962. doi : 10.1016/j.crma.2018.07.003.

[1] C. Anantharaman-Delaroche; J. Renault Amenable Groupoids, Monogr. Enseign. Math., Monographs of L'Enseignement mathématique, vol. 36, L'Enseignement mathématique, Geneva, Switzerland, 2000 (With a foreword by Georges Skandalis and Appendix B by E. Germain)

[2] L. Bowen Entropy theory for sofic groupoids I: the foundations, J. Anal. Math., Volume 124 (2014), pp. 149-233

[3] C.T. Conley; A.S. Kechris; R.D. Tucker-Drob Ultraproducts of measure preserving actions and graph combinatorics, Ergod. Theory Dyn. Syst., Volume 33 (2013) no. 2, pp. 334-374

[4] H.A. Dye On groups of measure preserving transformations. II, Amer. J. Math., Volume 85 (1963), pp. 551-576

[5] K. Dykema; D. Kerr; M. Pichot Sofic dimension for discrete measured groupoids, Trans. Amer. Math. Soc., Volume 366 (2014) no. 2, pp. 707-748

[6] G. Elek Full groups and soficity, Proc. Amer. Math. Soc., Volume 143 (2015) no. 5, pp. 1943-1950

[7] G. Elek; G. Lippner Sofic equivalence relations, J. Funct. Anal., Volume 258 (2010) no. 5, pp. 1692-1708

[8] J. Feldman; C.C. Moore Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc., Volume 234 (1977) no. 2, pp. 289-324

[9] J. Feldman; C.E. Sutherland; R.J. Zimmer Subrelations of ergodic equivalence relations, Ergod. Theory Dyn. Syst., Volume 9 (1989) no. 2, pp. 239-269

[10] T. Giordano; V. Pestov Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu, Volume 6 (2007) no. 2, pp. 279-315

[11] M. Gromov Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc., Volume 1 (1999) no. 2, pp. 109-197

[12] A. Ivanov Locally compact groups and continuous logic, 2013 | arXiv

[13] A.S. Kechris Classical Descriptive Set Theory, Grad. Texts Math., vol. 156, Springer-Verlag, New York, 1995

[14] A.S. Kechris Global Aspects of Ergodic Group Actions, Math. Surv. Monogr., vol. 160, American Mathematical Society, Providence, RI, USA, 2010

[15] Y. Kida Invariants of orbit equivalence relations and Baumslag–Solitar groups, Tohoku Math. J. (2), Volume 66 (2014) no. 2, pp. 205-258

[16] N. Ozawa Hyperlinearity, sofic groups and applications to group theory, 2009 (Unpublished notes)

[17] L. Păunescu On sofic actions and equivalence relations, J. Funct. Anal., Volume 261 (2011) no. 9, pp. 2461-2485

[18] L. Păunescu A convex structure on sofic embeddings, Ergod. Theory Dyn. Syst., Volume 34 (2014) no. 4, pp. 1343-1352

Cited by Sources:

Comments - Policy