[Métriques sur une surface fermée de genre deux qui maximisent la première valeur propre du laplacien]
Dans cette Note, nous donnons une réponse positive à la conjecture de Jakobson–Levitin–Nadirashvili–Nigam–Polterovich, en montrant qu'une certaine métrique singulière sur la surface de Bolza, d'aire normalisée, maximise la première valeur propre du laplacien.
In this paper, we settle in the affirmative the Jakobson–Levitin–Nadirashvili–Nigam–Polterovich conjecture, stating that a certain singular metric on the Bolza surface, with area normalized, should maximize the first eigenvalue of the Laplacian.
Accepté le :
Publié le :
Shin Nayatani 1 ; Toshihiro Shoda 2
@article{CRMATH_2019__357_1_84_0, author = {Shin Nayatani and Toshihiro Shoda}, title = {Metrics on a closed surface of genus two which maximize the first eigenvalue of the {Laplacian}}, journal = {Comptes Rendus. Math\'ematique}, pages = {84--98}, publisher = {Elsevier}, volume = {357}, number = {1}, year = {2019}, doi = {10.1016/j.crma.2018.11.008}, language = {en}, }
TY - JOUR AU - Shin Nayatani AU - Toshihiro Shoda TI - Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian JO - Comptes Rendus. Mathématique PY - 2019 SP - 84 EP - 98 VL - 357 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2018.11.008 LA - en ID - CRMATH_2019__357_1_84_0 ER -
Shin Nayatani; Toshihiro Shoda. Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian. Comptes Rendus. Mathématique, Volume 357 (2019) no. 1, pp. 84-98. doi : 10.1016/j.crma.2018.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.008/
[1] Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren der mathematischen Wissenschaften, vol. 67, Springer-Verlag, New York–Heidelberg, 1971
[2] First eigenvalue of symmetric minimal surfaces in , Indiana Univ. Math. J., Volume 58 (2009), pp. 269-281
[3] Index and flat ends of minimal surfaces, Tokyo J. Math., Volume 16 (1993) no. 1, pp. 37-48
[4] On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math., Volume 82 (1985) no. 1, pp. 121-132
[5] Deformations of symmetric CMC surfaces in the 3-sphere, Exp. Math., Volume 24 (2015), pp. 65-75
[6] Quatre propriétés isopérimétriques de membranes sphériques homogénes, C. R. Acad. Sci. Paris Ser. A–B, Volume 270 (1970), p. A1645-A1648
[7] How large can the first eigenvalue be on a surface of genus two?, Int. Math. Res. Not. IMRN, Volume 2005 (2005) no. 63, pp. 3967-3985
[8] Schrödinger operators associated to a holomorphic map, Berlin, 1990 (Lecture Notes in Mathematics), Volume vol. 1481, Springer, Berlin (1991), pp. 147-174
[9] Berger's isoperimetric problem and minimal immersions of surfaces, Geom. Funct. Anal., Volume 6 (1996) no. 5, pp. 877-897
[10] Conformal spectrum and harmonic maps, Mosc. Math. J., Volume 15 (2015) no. 1, pp. 123-140
[11] Lower bounds for the Morse index of complete minimal surfaces in Euclidean 3-space, Osaka J. Math., Volume 27 (1990) no. 2, pp. 453-464
[12] Morse index and Gauss maps of complete minimal surfaces in Euclidean 3-space, Comment. Math. Helv., Volume 68 (1993) no. 4, pp. 511-537
[13] A Survey of Minimal Surfaces, Dover Publications, Inc., New York, 1986
[14] Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces, Geom. Funct. Anal., Volume 24 (2014) no. 4, pp. 1336-1376
[15] Optimal Geometries on Surfaces, Colloquium at the Graduate, School of Mathematics, Nagoya University, December 2014 (2015)
[16] Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 7 (1980) no. 1, pp. 55-63
Cité par Sources :
☆ This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.
Commentaires - Politique