Comptes Rendus
Differential geometry
Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian
[Métriques sur une surface fermée de genre deux qui maximisent la première valeur propre du laplacien]
Comptes Rendus. Mathématique, Volume 357 (2019) no. 1, pp. 84-98.

Dans cette Note, nous donnons une réponse positive à la conjecture de Jakobson–Levitin–Nadirashvili–Nigam–Polterovich, en montrant qu'une certaine métrique singulière sur la surface de Bolza, d'aire normalisée, maximise la première valeur propre du laplacien.

In this paper, we settle in the affirmative the Jakobson–Levitin–Nadirashvili–Nigam–Polterovich conjecture, stating that a certain singular metric on the Bolza surface, with area normalized, should maximize the first eigenvalue of the Laplacian.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.11.008

Shin Nayatani 1 ; Toshihiro Shoda 2

1 Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
2 Faculty of Education, Saga University, Honjo-machi, Saga 840-8502, Japan
@article{CRMATH_2019__357_1_84_0,
     author = {Shin Nayatani and Toshihiro Shoda},
     title = {Metrics on a closed surface of genus two which maximize the first eigenvalue of the {Laplacian}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {84--98},
     publisher = {Elsevier},
     volume = {357},
     number = {1},
     year = {2019},
     doi = {10.1016/j.crma.2018.11.008},
     language = {en},
}
TY  - JOUR
AU  - Shin Nayatani
AU  - Toshihiro Shoda
TI  - Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 84
EP  - 98
VL  - 357
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2018.11.008
LA  - en
ID  - CRMATH_2019__357_1_84_0
ER  - 
%0 Journal Article
%A Shin Nayatani
%A Toshihiro Shoda
%T Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian
%J Comptes Rendus. Mathématique
%D 2019
%P 84-98
%V 357
%N 1
%I Elsevier
%R 10.1016/j.crma.2018.11.008
%G en
%F CRMATH_2019__357_1_84_0
Shin Nayatani; Toshihiro Shoda. Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian. Comptes Rendus. Mathématique, Volume 357 (2019) no. 1, pp. 84-98. doi : 10.1016/j.crma.2018.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.008/

[1] P.F. Byrd; M.D. Friedman Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren der mathematischen Wissenschaften, vol. 67, Springer-Verlag, New York–Heidelberg, 1971

[2] J. Choe; M. Soret First eigenvalue of symmetric minimal surfaces in S3, Indiana Univ. Math. J., Volume 58 (2009), pp. 269-281

[3] N. Ejiri; M. Kotani Index and flat ends of minimal surfaces, Tokyo J. Math., Volume 16 (1993) no. 1, pp. 37-48

[4] D. Fischer-Colbrie On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math., Volume 82 (1985) no. 1, pp. 121-132

[5] S. Heller; N. Schmitt Deformations of symmetric CMC surfaces in the 3-sphere, Exp. Math., Volume 24 (2015), pp. 65-75

[6] J. Hersch Quatre propriétés isopérimétriques de membranes sphériques homogénes, C. R. Acad. Sci. Paris Ser. A–B, Volume 270 (1970), p. A1645-A1648

[7] D. Jakobson; M. Levitin; N. Nadirashvili; N. Nigam; I. Polterovich How large can the first eigenvalue be on a surface of genus two?, Int. Math. Res. Not. IMRN, Volume 2005 (2005) no. 63, pp. 3967-3985

[8] S. Montiel; A. Ros Schrödinger operators associated to a holomorphic map, Berlin, 1990 (Lecture Notes in Mathematics), Volume vol. 1481, Springer, Berlin (1991), pp. 147-174

[9] N. Nadirashvili Berger's isoperimetric problem and minimal immersions of surfaces, Geom. Funct. Anal., Volume 6 (1996) no. 5, pp. 877-897

[10] N. Nadirashvili; Y. Sire Conformal spectrum and harmonic maps, Mosc. Math. J., Volume 15 (2015) no. 1, pp. 123-140

[11] S. Nayatani Lower bounds for the Morse index of complete minimal surfaces in Euclidean 3-space, Osaka J. Math., Volume 27 (1990) no. 2, pp. 453-464

[12] S. Nayatani Morse index and Gauss maps of complete minimal surfaces in Euclidean 3-space, Comment. Math. Helv., Volume 68 (1993) no. 4, pp. 511-537

[13] R. Osserman A Survey of Minimal Surfaces, Dover Publications, Inc., New York, 1986

[14] R. Petrides Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces, Geom. Funct. Anal., Volume 24 (2014) no. 4, pp. 1336-1376

[15] R.M. Schoen Optimal Geometries on Surfaces, Colloquium at the Graduate, School of Mathematics, Nagoya University, December 2014 (2015)

[16] P.C. Yang; S.T. Yau Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 7 (1980) no. 1, pp. 55-63

  • Maxime Fortier Bourque; Dídac Martínez-Granado; Franco Vargas Pallete The extremal length systole of the Bolza surface, Annales Henri Lebesgue, Volume 7 (2024), pp. 1409-1455 | DOI:10.5802/ahl.223 | Zbl:8012977
  • Mikhail Karpukhin; Mickaël Nahon; Iosif Polterovich; Daniel Stern Stability of isoperimetric inequalities for Laplace eigenvalues on surfaces, Journal of Differential Geometry, Volume 129 (2025) no. 2, pp. 415-490 | DOI:10.4310/jdg/1738163208 | Zbl:7988489
  • Petr Kravchuk; Dalimil Mazáč; Sridip Pal Automorphic spectra and the conformal bootstrap, Communications of the American Mathematical Society, Volume 4 (2024), pp. 1-63 | DOI:10.1090/cams/26 | Zbl:1544.58015
  • Mikhail Karpukhin; Daniel Stern From Steklov to Laplace: free boundary minimal surfaces with many boundary components, Duke Mathematical Journal, Volume 173 (2024) no. 8, pp. 1557-1629 | DOI:10.1215/00127094-2023-0041 | Zbl:1553.53008
  • Maxime Fortier Bourque; Bram Petri The Klein quartic maximizes the multiplicity of the first positive eigenvalue of the Laplacian, Journal of Differential Geometry, Volume 128 (2024) no. 2, pp. 521-556 | DOI:10.4310/jdg/1727712888 | Zbl:1551.58001
  • Kazumasa Narita Deformation of Kähler metrics and an eigenvalue problem for the Laplacian on a compact Kähler manifold, Manuscripta Mathematica, Volume 175 (2024) no. 3-4, pp. 841-864 | DOI:10.1007/s00229-024-01592-w | Zbl:1553.58015
  • Bruno Colbois; Alexandre Girouard; Carolyn Gordon; David Sher Some recent developments on the Steklov eigenvalue problem, Revista Matemática Complutense, Volume 37 (2024) no. 1, pp. 1-161 | DOI:10.1007/s13163-023-00480-3 | Zbl:1532.58004
  • Romain Petrides Extremal metrics for combinations of Laplace eigenvalues and minimal surfaces into ellipsoids, Journal of Functional Analysis, Volume 285 (2023) no. 10, p. 75 (Id/No 110087) | DOI:10.1016/j.jfa.2023.110087 | Zbl:1523.53063
  • Antonio Ros First eigenvalue of the Laplacian on compact surfaces for large genera, Mathematische Zeitschrift, Volume 305 (2023) no. 4, p. 15 (Id/No 62) | DOI:10.1007/s00209-023-03382-8 | Zbl:1539.58004
  • Antonio Ros On the first eigenvalue of the Laplacian on compact surfaces of genus three, Journal of the Mathematical Society of Japan, Volume 74 (2022) no. 3, pp. 813-828 | DOI:10.2969/jmsj/85898589 | Zbl:1496.35268
  • Mikhail Karpukhin; Denis Vinokurov The first eigenvalue of the Laplacian on orientable surfaces, Mathematische Zeitschrift, Volume 301 (2022) no. 3, pp. 2733-2746 | DOI:10.1007/s00209-022-03009-4 | Zbl:1491.58012
  • Mikhail Karpukhin; Xuwen Zhu Spherical conical metrics and harmonic maps to spheres, Transactions of the American Mathematical Society, Volume 375 (2022) no. 5, pp. 3325-3350 | DOI:10.1090/tran/8578 | Zbl:1497.53114
  • Alexandre Girouard; R. S. Laugesen Robin spectrum: two disks maximize the third eigenvalue, Indiana University Mathematics Journal, Volume 70 (2021) no. 6, pp. 2711-2742 | DOI:10.1512/iumj.2021.70.8721 | Zbl:1482.35144
  • Mikhail Karpukhin Index of minimal spheres and isoperimetric eigenvalue inequalities, Inventiones Mathematicae, Volume 223 (2021) no. 1, pp. 335-377 | DOI:10.1007/s00222-020-00992-5 | Zbl:1503.53122
  • Alexandre Girouard; Jean Lagacé Large Steklov eigenvalues via homogenisation on manifolds, Inventiones Mathematicae, Volume 226 (2021) no. 3, pp. 1011-1056 | DOI:10.1007/s00222-021-01058-w | Zbl:1477.58019
  • Mikhail Karpukhin; Nikolai Nadirashvili; Alexei V. Penskoi; Iosif Polterovich An isoperimetric inequality for Laplace eigenvalues on the sphere, Journal of Differential Geometry, Volume 118 (2021) no. 2, pp. 313-333 | DOI:10.4310/jdg/1622743142 | Zbl:1471.53056
  • Henrik Matthiesen; Anna Siffert Existence of metrics maximizing the first eigenvalue on non-orientable surfaces, Journal of Spectral Theory, Volume 11 (2021) no. 3, pp. 1279-1296 | DOI:10.4171/jst/372 | Zbl:1484.35301
  • Mikhail G. Katz; Stéphane Sabourau Systolically extremal nonpositively curved surfaces are flat with finitely many singularities, Journal of Topology and Analysis, Volume 13 (2021) no. 2, pp. 319-347 | DOI:10.1142/s1793525320500144 | Zbl:1484.53077
  • Mikhail Karpukhin; Vladimir Medvedev On the Friedlander-Nadirashvili invariants of surfaces, Mathematische Annalen, Volume 379 (2021) no. 3-4, pp. 1767-1805 | DOI:10.1007/s00208-020-02094-2 | Zbl:1465.58007
  • Ailana Fraser Extremal Eigenvalue Problems and Free Boundary Minimal Surfaces in the Ball, Geometric Analysis, Volume 2263 (2020), p. 1 | DOI:10.1007/978-3-030-53725-8_1
  • Henrik Matthiesen; Anna Siffert Sharp asymptotics of the first eigenvalue on some degenerating surfaces, Transactions of the American Mathematical Society, Volume 373 (2020) no. 8, pp. 5903-5936 | DOI:10.1090/tran/8114 | Zbl:1439.35352
  • Donato Cianci; Mikhail Karpukhin; Vladimir Medvedev On branched minimal immersions of surfaces by first eigenfunctions, Annals of Global Analysis and Geometry, Volume 56 (2019) no. 4, pp. 667-690 | DOI:10.1007/s10455-019-09683-8 | Zbl:1427.53080
  • Mikhail Karpukhin On the Yang-Yau inequality for the first Laplace eigenvalue, Geometric and Functional Analysis. GAFA, Volume 29 (2019) no. 6, pp. 1864-1885 | DOI:10.1007/s00039-019-00518-z | Zbl:1429.58040
  • Alexei V. Penskoi Isoperimetric inequalities for higher eigenvalues of the Laplace-Beltrami operator on surfaces, Proceedings of the Steklov Institute of Mathematics, Volume 305 (2019), pp. 270-286 | DOI:10.1134/s0081543819030167 | Zbl:1434.58012

Cité par 24 documents. Sources : Crossref, zbMATH

This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: