Comptes Rendus
Differential geometry
Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian
[Métriques sur une surface fermée de genre deux qui maximisent la première valeur propre du laplacien]
Comptes Rendus. Mathématique, Volume 357 (2019) no. 1, pp. 84-98.

Dans cette Note, nous donnons une réponse positive à la conjecture de Jakobson–Levitin–Nadirashvili–Nigam–Polterovich, en montrant qu'une certaine métrique singulière sur la surface de Bolza, d'aire normalisée, maximise la première valeur propre du laplacien.

In this paper, we settle in the affirmative the Jakobson–Levitin–Nadirashvili–Nigam–Polterovich conjecture, stating that a certain singular metric on the Bolza surface, with area normalized, should maximize the first eigenvalue of the Laplacian.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.11.008

Shin Nayatani 1 ; Toshihiro Shoda 2

1 Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
2 Faculty of Education, Saga University, Honjo-machi, Saga 840-8502, Japan
@article{CRMATH_2019__357_1_84_0,
     author = {Shin Nayatani and Toshihiro Shoda},
     title = {Metrics on a closed surface of genus two which maximize the first eigenvalue of the {Laplacian}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {84--98},
     publisher = {Elsevier},
     volume = {357},
     number = {1},
     year = {2019},
     doi = {10.1016/j.crma.2018.11.008},
     language = {en},
}
TY  - JOUR
AU  - Shin Nayatani
AU  - Toshihiro Shoda
TI  - Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 84
EP  - 98
VL  - 357
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2018.11.008
LA  - en
ID  - CRMATH_2019__357_1_84_0
ER  - 
%0 Journal Article
%A Shin Nayatani
%A Toshihiro Shoda
%T Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian
%J Comptes Rendus. Mathématique
%D 2019
%P 84-98
%V 357
%N 1
%I Elsevier
%R 10.1016/j.crma.2018.11.008
%G en
%F CRMATH_2019__357_1_84_0
Shin Nayatani; Toshihiro Shoda. Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian. Comptes Rendus. Mathématique, Volume 357 (2019) no. 1, pp. 84-98. doi : 10.1016/j.crma.2018.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.008/

[1] P.F. Byrd; M.D. Friedman Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren der mathematischen Wissenschaften, vol. 67, Springer-Verlag, New York–Heidelberg, 1971

[2] J. Choe; M. Soret First eigenvalue of symmetric minimal surfaces in S3, Indiana Univ. Math. J., Volume 58 (2009), pp. 269-281

[3] N. Ejiri; M. Kotani Index and flat ends of minimal surfaces, Tokyo J. Math., Volume 16 (1993) no. 1, pp. 37-48

[4] D. Fischer-Colbrie On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math., Volume 82 (1985) no. 1, pp. 121-132

[5] S. Heller; N. Schmitt Deformations of symmetric CMC surfaces in the 3-sphere, Exp. Math., Volume 24 (2015), pp. 65-75

[6] J. Hersch Quatre propriétés isopérimétriques de membranes sphériques homogénes, C. R. Acad. Sci. Paris Ser. A–B, Volume 270 (1970), p. A1645-A1648

[7] D. Jakobson; M. Levitin; N. Nadirashvili; N. Nigam; I. Polterovich How large can the first eigenvalue be on a surface of genus two?, Int. Math. Res. Not. IMRN, Volume 2005 (2005) no. 63, pp. 3967-3985

[8] S. Montiel; A. Ros Schrödinger operators associated to a holomorphic map, Berlin, 1990 (Lecture Notes in Mathematics), Volume vol. 1481, Springer, Berlin (1991), pp. 147-174

[9] N. Nadirashvili Berger's isoperimetric problem and minimal immersions of surfaces, Geom. Funct. Anal., Volume 6 (1996) no. 5, pp. 877-897

[10] N. Nadirashvili; Y. Sire Conformal spectrum and harmonic maps, Mosc. Math. J., Volume 15 (2015) no. 1, pp. 123-140

[11] S. Nayatani Lower bounds for the Morse index of complete minimal surfaces in Euclidean 3-space, Osaka J. Math., Volume 27 (1990) no. 2, pp. 453-464

[12] S. Nayatani Morse index and Gauss maps of complete minimal surfaces in Euclidean 3-space, Comment. Math. Helv., Volume 68 (1993) no. 4, pp. 511-537

[13] R. Osserman A Survey of Minimal Surfaces, Dover Publications, Inc., New York, 1986

[14] R. Petrides Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces, Geom. Funct. Anal., Volume 24 (2014) no. 4, pp. 1336-1376

[15] R.M. Schoen Optimal Geometries on Surfaces, Colloquium at the Graduate, School of Mathematics, Nagoya University, December 2014 (2015)

[16] P.C. Yang; S.T. Yau Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 7 (1980) no. 1, pp. 55-63

Cité par Sources :

This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

Commentaires - Politique