[Métriques sur une surface fermée de genre deux qui maximisent la première valeur propre du laplacien]
Dans cette Note, nous donnons une réponse positive à la conjecture de Jakobson–Levitin–Nadirashvili–Nigam–Polterovich, en montrant qu'une certaine métrique singulière sur la surface de Bolza, d'aire normalisée, maximise la première valeur propre du laplacien.
In this paper, we settle in the affirmative the Jakobson–Levitin–Nadirashvili–Nigam–Polterovich conjecture, stating that a certain singular metric on the Bolza surface, with area normalized, should maximize the first eigenvalue of the Laplacian.
Accepté le :
Publié le :
Shin Nayatani 1 ; Toshihiro Shoda 2
@article{CRMATH_2019__357_1_84_0, author = {Shin Nayatani and Toshihiro Shoda}, title = {Metrics on a closed surface of genus two which maximize the first eigenvalue of the {Laplacian}}, journal = {Comptes Rendus. Math\'ematique}, pages = {84--98}, publisher = {Elsevier}, volume = {357}, number = {1}, year = {2019}, doi = {10.1016/j.crma.2018.11.008}, language = {en}, }
TY - JOUR AU - Shin Nayatani AU - Toshihiro Shoda TI - Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian JO - Comptes Rendus. Mathématique PY - 2019 SP - 84 EP - 98 VL - 357 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2018.11.008 LA - en ID - CRMATH_2019__357_1_84_0 ER -
Shin Nayatani; Toshihiro Shoda. Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian. Comptes Rendus. Mathématique, Volume 357 (2019) no. 1, pp. 84-98. doi : 10.1016/j.crma.2018.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.008/
[1] Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren der mathematischen Wissenschaften, vol. 67, Springer-Verlag, New York–Heidelberg, 1971
[2] First eigenvalue of symmetric minimal surfaces in
[3] Index and flat ends of minimal surfaces, Tokyo J. Math., Volume 16 (1993) no. 1, pp. 37-48
[4] On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math., Volume 82 (1985) no. 1, pp. 121-132
[5] Deformations of symmetric CMC surfaces in the 3-sphere, Exp. Math., Volume 24 (2015), pp. 65-75
[6] Quatre propriétés isopérimétriques de membranes sphériques homogénes, C. R. Acad. Sci. Paris Ser. A–B, Volume 270 (1970), p. A1645-A1648
[7] How large can the first eigenvalue be on a surface of genus two?, Int. Math. Res. Not. IMRN, Volume 2005 (2005) no. 63, pp. 3967-3985
[8] Schrödinger operators associated to a holomorphic map, Berlin, 1990 (Lecture Notes in Mathematics), Volume vol. 1481, Springer, Berlin (1991), pp. 147-174
[9] Berger's isoperimetric problem and minimal immersions of surfaces, Geom. Funct. Anal., Volume 6 (1996) no. 5, pp. 877-897
[10] Conformal spectrum and harmonic maps, Mosc. Math. J., Volume 15 (2015) no. 1, pp. 123-140
[11] Lower bounds for the Morse index of complete minimal surfaces in Euclidean 3-space, Osaka J. Math., Volume 27 (1990) no. 2, pp. 453-464
[12] Morse index and Gauss maps of complete minimal surfaces in Euclidean 3-space, Comment. Math. Helv., Volume 68 (1993) no. 4, pp. 511-537
[13] A Survey of Minimal Surfaces, Dover Publications, Inc., New York, 1986
[14] Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces, Geom. Funct. Anal., Volume 24 (2014) no. 4, pp. 1336-1376
[15] Optimal Geometries on Surfaces, Colloquium at the Graduate, School of Mathematics, Nagoya University, December 2014 (2015)
[16] Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 7 (1980) no. 1, pp. 55-63
- The extremal length systole of the Bolza surface, Annales Henri Lebesgue, Volume 7 (2024), pp. 1409-1455 | DOI:10.5802/ahl.223 | Zbl:8012977
- Stability of isoperimetric inequalities for Laplace eigenvalues on surfaces, Journal of Differential Geometry, Volume 129 (2025) no. 2, pp. 415-490 | DOI:10.4310/jdg/1738163208 | Zbl:7988489
- Automorphic spectra and the conformal bootstrap, Communications of the American Mathematical Society, Volume 4 (2024), pp. 1-63 | DOI:10.1090/cams/26 | Zbl:1544.58015
- From Steklov to Laplace: free boundary minimal surfaces with many boundary components, Duke Mathematical Journal, Volume 173 (2024) no. 8, pp. 1557-1629 | DOI:10.1215/00127094-2023-0041 | Zbl:1553.53008
- The Klein quartic maximizes the multiplicity of the first positive eigenvalue of the Laplacian, Journal of Differential Geometry, Volume 128 (2024) no. 2, pp. 521-556 | DOI:10.4310/jdg/1727712888 | Zbl:1551.58001
- Deformation of Kähler metrics and an eigenvalue problem for the Laplacian on a compact Kähler manifold, Manuscripta Mathematica, Volume 175 (2024) no. 3-4, pp. 841-864 | DOI:10.1007/s00229-024-01592-w | Zbl:1553.58015
- Some recent developments on the Steklov eigenvalue problem, Revista Matemática Complutense, Volume 37 (2024) no. 1, pp. 1-161 | DOI:10.1007/s13163-023-00480-3 | Zbl:1532.58004
- Extremal metrics for combinations of Laplace eigenvalues and minimal surfaces into ellipsoids, Journal of Functional Analysis, Volume 285 (2023) no. 10, p. 75 (Id/No 110087) | DOI:10.1016/j.jfa.2023.110087 | Zbl:1523.53063
- First eigenvalue of the Laplacian on compact surfaces for large genera, Mathematische Zeitschrift, Volume 305 (2023) no. 4, p. 15 (Id/No 62) | DOI:10.1007/s00209-023-03382-8 | Zbl:1539.58004
- On the first eigenvalue of the Laplacian on compact surfaces of genus three, Journal of the Mathematical Society of Japan, Volume 74 (2022) no. 3, pp. 813-828 | DOI:10.2969/jmsj/85898589 | Zbl:1496.35268
- The first eigenvalue of the Laplacian on orientable surfaces, Mathematische Zeitschrift, Volume 301 (2022) no. 3, pp. 2733-2746 | DOI:10.1007/s00209-022-03009-4 | Zbl:1491.58012
- Spherical conical metrics and harmonic maps to spheres, Transactions of the American Mathematical Society, Volume 375 (2022) no. 5, pp. 3325-3350 | DOI:10.1090/tran/8578 | Zbl:1497.53114
- Robin spectrum: two disks maximize the third eigenvalue, Indiana University Mathematics Journal, Volume 70 (2021) no. 6, pp. 2711-2742 | DOI:10.1512/iumj.2021.70.8721 | Zbl:1482.35144
- Index of minimal spheres and isoperimetric eigenvalue inequalities, Inventiones Mathematicae, Volume 223 (2021) no. 1, pp. 335-377 | DOI:10.1007/s00222-020-00992-5 | Zbl:1503.53122
- Large Steklov eigenvalues via homogenisation on manifolds, Inventiones Mathematicae, Volume 226 (2021) no. 3, pp. 1011-1056 | DOI:10.1007/s00222-021-01058-w | Zbl:1477.58019
- An isoperimetric inequality for Laplace eigenvalues on the sphere, Journal of Differential Geometry, Volume 118 (2021) no. 2, pp. 313-333 | DOI:10.4310/jdg/1622743142 | Zbl:1471.53056
- Existence of metrics maximizing the first eigenvalue on non-orientable surfaces, Journal of Spectral Theory, Volume 11 (2021) no. 3, pp. 1279-1296 | DOI:10.4171/jst/372 | Zbl:1484.35301
- Systolically extremal nonpositively curved surfaces are flat with finitely many singularities, Journal of Topology and Analysis, Volume 13 (2021) no. 2, pp. 319-347 | DOI:10.1142/s1793525320500144 | Zbl:1484.53077
- On the Friedlander-Nadirashvili invariants of surfaces, Mathematische Annalen, Volume 379 (2021) no. 3-4, pp. 1767-1805 | DOI:10.1007/s00208-020-02094-2 | Zbl:1465.58007
- Extremal Eigenvalue Problems and Free Boundary Minimal Surfaces in the Ball, Geometric Analysis, Volume 2263 (2020), p. 1 | DOI:10.1007/978-3-030-53725-8_1
- Sharp asymptotics of the first eigenvalue on some degenerating surfaces, Transactions of the American Mathematical Society, Volume 373 (2020) no. 8, pp. 5903-5936 | DOI:10.1090/tran/8114 | Zbl:1439.35352
- On branched minimal immersions of surfaces by first eigenfunctions, Annals of Global Analysis and Geometry, Volume 56 (2019) no. 4, pp. 667-690 | DOI:10.1007/s10455-019-09683-8 | Zbl:1427.53080
- On the Yang-Yau inequality for the first Laplace eigenvalue, Geometric and Functional Analysis. GAFA, Volume 29 (2019) no. 6, pp. 1864-1885 | DOI:10.1007/s00039-019-00518-z | Zbl:1429.58040
- Isoperimetric inequalities for higher eigenvalues of the Laplace-Beltrami operator on surfaces, Proceedings of the Steklov Institute of Mathematics, Volume 305 (2019), pp. 270-286 | DOI:10.1134/s0081543819030167 | Zbl:1434.58012
Cité par 24 documents. Sources : Crossref, zbMATH
☆ This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier