In this Note, we give an explicit geometric formula for twisted orbital integrals using the method of the hypoelliptic Laplacian developed by Bismut. We apply this formula to evaluate the leading term in the asymptotic expansion of the equivariant Ray–Singer analytic torsion on compact locally symmetric spaces.
On donne une formule géométrique explicite pour des intégrales orbitales tordues en utilisant la méthode du laplacien hypoelliptique développée par Bismut. On utilise cette formule explicite pour évaluer le terme dominant dans l'asymptotique de la torsion équivariante de Ray–Singer sur un espace localement symétrique compact.
Accepted:
Published online:
Bingxiao Liu 1
@article{CRMATH_2019__357_1_74_0, author = {Bingxiao Liu}, title = {Hypoelliptic {Laplacian} and twisted trace formula}, journal = {Comptes Rendus. Math\'ematique}, pages = {74--83}, publisher = {Elsevier}, volume = {357}, number = {1}, year = {2019}, doi = {10.1016/j.crma.2018.11.010}, language = {en}, }
Bingxiao Liu. Hypoelliptic Laplacian and twisted trace formula. Comptes Rendus. Mathématique, Volume 357 (2019) no. 1, pp. 74-83. doi : 10.1016/j.crma.2018.11.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.11.010/
[1] A Lefschetz fixed point formula for elliptic complexes. I, Ann. of Math. (2), Volume 86 (1967), pp. 374-407
[2] A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2), Volume 88 (1968), pp. 451-491
[3] The equivariant index and Kirillov's character formula, Amer. J. Math., Volume 107 (1985) no. 5, pp. 1159-1190
[4] Hypoelliptic Laplacian and Orbital Integrals, Annals of Mathematics Studies, vol. 177, Princeton University Press, Princeton, NJ, USA, 2011
[5] Equivariant de Rham torsions, Ann. of Math. (2), Volume 159 (2004) no. 1, pp. 53-216
[6] The Hypoelliptic Laplacian and Ray–Singer Metrics, Annals of Mathematics Studies, vol. 167, Princeton University Press, Princeton, NJ, USA, 2008
[7] Asymptotic torsion and Toeplitz operators, J. Inst. Math. Jussieu, Volume 16 (2017) no. 2, pp. 223-349
[8] Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, USA, 1996
[9] K. Fedosova, On the asymptotics of the analytic torsion for compact hyperbolic orbifolds, ArXiv e-prints, November 2015.
[10] Hypoelliptic second order differential equations, Acta Math., Volume 119 (1967) no. 1, pp. 147-171
[11] Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, USA, 2001 (Reprint of the 1986 original xx+773 pp.)
[12] Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the ρ-decomposition , and the -module structure of , Adv. Math., Volume 125 (1997) no. 2, pp. 275-350
[13] Hypoelliptic Laplacian and Twisted Trace Formula, Université Paris-Saclay, June 2018 (PhD thesis HAL Id: tel-01841334, version 1)
[14] The asymptotics of the Ray–Singer analytic torsion of hyperbolic 3-manifolds, Metric and Differential Geometry, Progr. Math., vol. 297, Birkhäuser/Springer, Basel, Switzerland, 2012, pp. 317-352
[15] On the asymptotics of the Ray–Singer analytic torsion for compact hyperbolic manifolds, Int. Math. Res. Not. IMRN (2013) no. 13, pp. 2945-2983
[16] R-torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210
[17] Analytic torsion, Univ. California, Berkeley, Calif., 1971 (Proc. Sympos. Pure Math.), Volume vol. XXIII, Amer. Math. Soc., Providence, RI, USA (1973), pp. 167-181
[18] On discontinuous groups in higher-dimensional symmetric spaces, Bombay, 1960, Tata Institute of Fundamental Research, Bombay (1960), pp. 147-164
[19] Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, vol. 19, Marcel Dekker, Inc., New York, 1973
Cited by Sources:
Comments - Policy