[Équations de Stokes et de Navier–Stokes avec la condition de Navier]
In this paper, we study the stationary Stokes and Navier–Stokes equations with non-homogeneous Navier boundary condition in a bounded domain
Dans cette note, nous étudions les équations stationnaires de Stokes et de Navier–Stokes avec une condition aux limites non homogène de Navier dans un domaine borné
Accepté le :
Publié le :
Paul Acevedo 1 ; Chérif Amrouche 2 ; Carlos Conca 3 ; Amrita Ghosh 2, 4
@article{CRMATH_2019__357_2_115_0, author = {Paul Acevedo and Ch\'erif Amrouche and Carlos Conca and Amrita Ghosh}, title = {Stokes and {Navier{\textendash}Stokes} equations with {Navier} boundary condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--119}, publisher = {Elsevier}, volume = {357}, number = {2}, year = {2019}, doi = {10.1016/j.crma.2018.12.002}, language = {en}, }
TY - JOUR AU - Paul Acevedo AU - Chérif Amrouche AU - Carlos Conca AU - Amrita Ghosh TI - Stokes and Navier–Stokes equations with Navier boundary condition JO - Comptes Rendus. Mathématique PY - 2019 SP - 115 EP - 119 VL - 357 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2018.12.002 LA - en ID - CRMATH_2019__357_2_115_0 ER -
Paul Acevedo; Chérif Amrouche; Carlos Conca; Amrita Ghosh. Stokes and Navier–Stokes equations with Navier boundary condition. Comptes Rendus. Mathématique, Volume 357 (2019) no. 2, pp. 115-119. doi : 10.1016/j.crma.2018.12.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.12.002/
[1]
[2]
[3] Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions, Adv. Differ. Equ., Volume 9 (2004) no. 9–10, pp. 1079-1114
[4] An elementary approach to the 3D Navier–Stokes equations with Navier boundary conditions: existence and uniqueness of various classes of solutions in the flat boundary case, Discrete Contin. Dyn. Syst., Ser. S, Volume 3 (2010) no. 2, pp. 199-219
[5] On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures Appl., Volume 64 (1985) no. 1, pp. 31-75
[6] Nonlinear systems of the type of the stationary Navier–Stokes system, J. Reine Angew. Math., Volume 330 (1982), pp. 173-214
[7] One problem of the Navier type for the Stokes system in planar domains, J. Differ. Equ., Volume 261 (2016) no. 10, pp. 5670-5689
[8] Mémoire sur les lois du mouvement des fluides, Mém. Acad. Sci. Inst. Fr. (2) (1823), pp. 389-440
[9] Équations de Navier–Stokes stationnaires avec données peu régulières, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 10 (1983) no. 4, pp. 543-559
[10] A certain boundary value problem for the stationary system of Navier–Stokes equations, Tr. Mat. Inst. Steklova, Volume 125 (1973), pp. 196-210 (235. Boundary value problems of mathematical physics, 8)
Cité par Sources :
Commentaires - Politique