In this paper, we study the stationary Stokes and Navier–Stokes equations with non-homogeneous Navier boundary condition in a bounded domain of class from the viewpoint of the behavior of solutions with respect to the friction coefficient α. We first prove the existence of a unique weak solution (and strong) in (and ) to the linear problem for all considering minimal regularity of α, using some inf–sup condition concerning the rotational operator. Furthermore, we deduce uniform estimates of the solutions for large α, which enables us to obtain the strong convergence of Stokes solutions with Navier slip boundary condition to the one with no-slip boundary condition as . Finally, we discuss the same questions for the non-linear system.
Dans cette note, nous étudions les équations stationnaires de Stokes et de Navier–Stokes avec une condition aux limites non homogène de Navier dans un domaine borné de classe , et envisageons le comportement des solutions par rapport au coefficient de friction α. Nous prouvons, d'abord dans le cas linéaire, l'existence d'une solution faible (et d'une solution forte) unique dans (et ) pour tout en supposant α le moins régulier possible et en utilisant une condition inf–sup concernant l'opérateur rotationnel. De plus, nous déduisons des estimations uniformes des solutions pour α grand, qui nous permettent d'obtenir la convergence forte des solutions de Stokes avec la condition de glissement vers les solutions vérifiant la condition d'adhérence lorsque . Finalement, nous étudions les mêmes questions pour le système non linéaire.
Accepted:
Published online:
Paul Acevedo 1; Chérif Amrouche 2; Carlos Conca 3; Amrita Ghosh 2, 4
@article{CRMATH_2019__357_2_115_0, author = {Paul Acevedo and Ch\'erif Amrouche and Carlos Conca and Amrita Ghosh}, title = {Stokes and {Navier{\textendash}Stokes} equations with {Navier} boundary condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--119}, publisher = {Elsevier}, volume = {357}, number = {2}, year = {2019}, doi = {10.1016/j.crma.2018.12.002}, language = {en}, }
TY - JOUR AU - Paul Acevedo AU - Chérif Amrouche AU - Carlos Conca AU - Amrita Ghosh TI - Stokes and Navier–Stokes equations with Navier boundary condition JO - Comptes Rendus. Mathématique PY - 2019 SP - 115 EP - 119 VL - 357 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2018.12.002 LA - en ID - CRMATH_2019__357_2_115_0 ER -
Paul Acevedo; Chérif Amrouche; Carlos Conca; Amrita Ghosh. Stokes and Navier–Stokes equations with Navier boundary condition. Comptes Rendus. Mathématique, Volume 357 (2019) no. 2, pp. 115-119. doi : 10.1016/j.crma.2018.12.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.12.002/
[1] -theory for Stokes and Navier–Stokes equations with Navier boundary condition, J. Differ. Equ., Volume 256 (2014) no. 4, pp. 1515-1547
[2] -theory for vector potentials and Sobolev's inequalities for vector fields: application to the Stokes equations with pressure boundary conditions, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 1, pp. 37-92
[3] Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions, Adv. Differ. Equ., Volume 9 (2004) no. 9–10, pp. 1079-1114
[4] An elementary approach to the 3D Navier–Stokes equations with Navier boundary conditions: existence and uniqueness of various classes of solutions in the flat boundary case, Discrete Contin. Dyn. Syst., Ser. S, Volume 3 (2010) no. 2, pp. 199-219
[5] On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures Appl., Volume 64 (1985) no. 1, pp. 31-75
[6] Nonlinear systems of the type of the stationary Navier–Stokes system, J. Reine Angew. Math., Volume 330 (1982), pp. 173-214
[7] One problem of the Navier type for the Stokes system in planar domains, J. Differ. Equ., Volume 261 (2016) no. 10, pp. 5670-5689
[8] Mémoire sur les lois du mouvement des fluides, Mém. Acad. Sci. Inst. Fr. (2) (1823), pp. 389-440
[9] Équations de Navier–Stokes stationnaires avec données peu régulières, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 10 (1983) no. 4, pp. 543-559
[10] A certain boundary value problem for the stationary system of Navier–Stokes equations, Tr. Mat. Inst. Steklova, Volume 125 (1973), pp. 196-210 (235. Boundary value problems of mathematical physics, 8)
Cited by Sources:
Comments - Policy