[Équations de Stokes et de Navier–Stokes avec la condition de Navier]
Dans cette note, nous étudions les équations stationnaires de Stokes et de Navier–Stokes avec une condition aux limites non homogène de Navier dans un domaine borné
In this paper, we study the stationary Stokes and Navier–Stokes equations with non-homogeneous Navier boundary condition in a bounded domain
Accepté le :
Publié le :
Paul Acevedo 1 ; Chérif Amrouche 2 ; Carlos Conca 3 ; Amrita Ghosh 2, 4
@article{CRMATH_2019__357_2_115_0, author = {Paul Acevedo and Ch\'erif Amrouche and Carlos Conca and Amrita Ghosh}, title = {Stokes and {Navier{\textendash}Stokes} equations with {Navier} boundary condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--119}, publisher = {Elsevier}, volume = {357}, number = {2}, year = {2019}, doi = {10.1016/j.crma.2018.12.002}, language = {en}, }
TY - JOUR AU - Paul Acevedo AU - Chérif Amrouche AU - Carlos Conca AU - Amrita Ghosh TI - Stokes and Navier–Stokes equations with Navier boundary condition JO - Comptes Rendus. Mathématique PY - 2019 SP - 115 EP - 119 VL - 357 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2018.12.002 LA - en ID - CRMATH_2019__357_2_115_0 ER -
Paul Acevedo; Chérif Amrouche; Carlos Conca; Amrita Ghosh. Stokes and Navier–Stokes equations with Navier boundary condition. Comptes Rendus. Mathématique, Volume 357 (2019) no. 2, pp. 115-119. doi : 10.1016/j.crma.2018.12.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.12.002/
[1]
[2]
[3] Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions, Adv. Differ. Equ., Volume 9 (2004) no. 9–10, pp. 1079-1114
[4] An elementary approach to the 3D Navier–Stokes equations with Navier boundary conditions: existence and uniqueness of various classes of solutions in the flat boundary case, Discrete Contin. Dyn. Syst., Ser. S, Volume 3 (2010) no. 2, pp. 199-219
[5] On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures Appl., Volume 64 (1985) no. 1, pp. 31-75
[6] Nonlinear systems of the type of the stationary Navier–Stokes system, J. Reine Angew. Math., Volume 330 (1982), pp. 173-214
[7] One problem of the Navier type for the Stokes system in planar domains, J. Differ. Equ., Volume 261 (2016) no. 10, pp. 5670-5689
[8] Mémoire sur les lois du mouvement des fluides, Mém. Acad. Sci. Inst. Fr. (2) (1823), pp. 389-440
[9] Équations de Navier–Stokes stationnaires avec données peu régulières, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 10 (1983) no. 4, pp. 543-559
[10] A certain boundary value problem for the stationary system of Navier–Stokes equations, Tr. Mat. Inst. Steklova, Volume 125 (1973), pp. 196-210 (235. Boundary value problems of mathematical physics, 8)
Cité par Sources :
Commentaires - Politique