[Transfert algébrique pour l'espace réel projectif]
Une description au niveau des chaînes du transfert de Singer pour tout
A chain-level representation of the Singer transfer for any left
Accepté le :
Publié le :
Nguyễn H.V. Hưng 1 ; Lưu X. Trường 1
@article{CRMATH_2019__357_2_111_0, author = {Nguyễn H.V. Hưng and Lưu X. Trường}, title = {The algebraic transfer for the real projective space}, journal = {Comptes Rendus. Math\'ematique}, pages = {111--114}, publisher = {Elsevier}, volume = {357}, number = {2}, year = {2019}, doi = {10.1016/j.crma.2019.01.001}, language = {en}, }
Nguyễn H.V. Hưng; Lưu X. Trường. The algebraic transfer for the real projective space. Comptes Rendus. Mathématique, Volume 357 (2019) no. 2, pp. 111-114. doi : 10.1016/j.crma.2019.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.01.001/
[1] On the non-existence of elements of Hopf invariant one, Ann. of Math. (2), Volume 72 (1960), pp. 20-104
[2] Modular representations on the homology of powers of real projective space (M.C. Tangora, ed.), Algebraic Topology: Oaxtepec 1991, Contemp. Math., vol. 146, 1993, pp. 49-70
[3] On behavior of the algebraic transfer, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 473-487
[4] Determination of
[5] Sub-Hopf algebras of the Steenrod algebra and the Singer transfer (J. Hubbuck; N.H.V. Hưng; L. Schwartz, eds.), Proc. Hanoi 2004 School and Conf. in Alg. Topology, Geom. Topol. Monogr., vol. 11, 2007, pp. 101-124
[6] The weak conjecture on spherical classes, Math. Z., Volume 231 (1999), pp. 727-743
[7] The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 4065-4089
[8] The image of Singer's fourth transfer, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 1415-1418
[9] Products of Projective Spaces as Steenrod Modules, Johns Hopkins University, Baltimore, MD, USA, 1990 (Thesis)
[10]
[11] (Lect. Notes Math.), Volume vol. 168, Springer-Verlag (1970), pp. 153-231
[12] Modular invariant theory and the cohomology algebras of symmetric group, J. Frac. Sci. Univ. Tokyo Sect. IA Math., Volume 22 (1975), pp. 319-369
[13] Invariant theory and the Lambda algebra, Trans. Amer. Math. Soc., Volume 280 (1983), pp. 673-693
[14] The transfer in homological algebra, Math. Z., Volume 202 (1989), pp. 493-523
[15] On the cohomology of the Steenrod algebra, Math. Z., Volume 116 (1970), pp. 18-64
[16] On the cohomology of the mod 2 Steenrod algebra and the non-existence of elements of Hopf invariant one, Ill. J. Math., Volume 11 (1967), pp. 480-490
Cité par Sources :
☆ This research is funded by the National Foundation for Science and Technology Development (NAFOSTED) of Vietnam under grant number 101.04-2014.19.
Commentaires - Politique