[Un problème de confinement pour une coque de Koiter linéairement élastique]
Dans cette Note, on propose un modèle naturel « de type de Koiter » pour une coque linéairement élastique générale confinée dans un demi-espace. Ce modèle est gouverné par un système d'inégalités variationnelles posées sur un sous-ensemble non vide convexe et fermé de l'espace fonctionnel utilisé dans la modélisation du modèle correspondant de Koiter « sans contrainte ». Afin d'étudier le comportement limite du modèle proposé lorsque l'épaisseur de la coque, considérée comme un petit paramètre, tend vers zéro, nous effectuons une analyse asymptotique rigoureuse, en distinguant les cas où la coque est elliptique membranaire, ou membranaire généralisée du premier type, ou en flexion. De plus, dans le cas où la coque est elliptique membranaire, nous montrons que le modèle limite obtenu par l'analyse asymptotique du modèle bidimensionnel de Koiter que nous proposons coïncide avec le modèle limite obtenu par une analyse asymptotique rigoureuse du modèle correspondant tri-dimensionnel « avec contrainte ».
In this Note, we propose a natural two-dimensional model of “Koiter's type” for a general linearly elastic shell confined in a half space. This model is governed by a set of variational inequalities posed over a non-empty closed and convex subset of the function space used for modeling the corresponding “unconstrained” Koiter's model. To study the limit behavior of the proposed model as the thickness of the shell, regarded as a small parameter, approaches zero, we perform a rigorous asymptotic analysis, distinguishing the cases where the shell is either an elliptic membrane shell, a generalized membrane shell of the first kind, or a flexural shell. Moreover, in the case where the shell is an elliptic membrane shell, we show that the limit model obtained via the asymptotic analysis of our proposed two-dimensional Koiter's model coincides with the limit model obtained via a rigorous asymptotic analysis of the corresponding three-dimensional “constrained” model.
Accepté le :
Publié le :
Philippe G. Ciarlet 1 ; Paolo Piersanti 1
@article{CRMATH_2019__357_2_221_0, author = {Philippe G. Ciarlet and Paolo Piersanti}, title = {A confinement problem for a linearly elastic {Koiter's} shell}, journal = {Comptes Rendus. Math\'ematique}, pages = {221--230}, publisher = {Elsevier}, volume = {357}, number = {2}, year = {2019}, doi = {10.1016/j.crma.2019.01.004}, language = {en}, }
Philippe G. Ciarlet; Paolo Piersanti. A confinement problem for a linearly elastic Koiter's shell. Comptes Rendus. Mathématique, Volume 357 (2019) no. 2, pp. 221-230. doi : 10.1016/j.crma.2019.01.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.01.004/
[1] Sur l'ellipticité du modèle linéaire de coques de W. T. Koiter, Computing Methods in Applied Sciences and Engineering, Part 1, Lecture Notes in Economics and Mathematical Systems, vol. 134, Springer, Heidelberg, Germany, 1996, pp. 89-136
[2] Existence theorems for two-dimensional linear shell theories, J. Elast., Volume 34 (1994), pp. 111-138
[3] A new kind of singular stiff problems and application to thin elastic shells, Math. Models Methods Appl. Sci., Volume 5 (1995), pp. 47-66
[4] Mathematical Elasticity. Vol. III. Theory of Shells, North-Holland, Amsterdam, 2000
[5] An Introduction to Differential Geometry with Applications to Elasticity, Springer, Dordrecht, The Netherlands, 2005
[6] A classification of thin shell theories, Acta Appl. Math., Volume 4 (1985), pp. 15-63
[7] On the ellipticity of linear membrane shell equations, J. Math. Pures Appl., Volume 75 (1996), pp. 107-124
[8] Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations, Arch. Ration. Mech. Anal., Volume 136 (1996), pp. 191-200
[9] Asymptotic analysis of linearly elastic shells: “generalized membrane shells”, J. Elast., Volume 43 (1996), pp. 147-188
[10] An obstacle problem for elliptic membrane shells, Math. Mech. Solids (2019) | DOI
[11] Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique, C. R. Acad. Sci. Paris, Ser. I, Volume 356 (2018), pp. 1040-1051
[12] An obstacle problem for Koiter's shells, Math. Mech. Solids (2019) | DOI
[13] An existence and uniqueness theorem for the two-dimensional linear membrane shell equations, J. Math. Pures Appl., Volume 75 (1996), pp. 51-67
[14] On the foundations of the linear theory of thin elastic shells. I, II, Ned. Akad. Wet. Proc. Ser. B, Volume 73 (1970), pp. 169-182
[15] Statique et dynamique des coques minces. I. Cas de flexion pure non inhibée, C. R. Acad. Sci. Paris, Ser. I, Volume 309 (1989), pp. 411-417
Cité par Sources :
Commentaires - Politique