Comptes Rendus
Mathematical physics
Superconductivity and the Aharonov–Bohm effect
Comptes Rendus. Mathématique, Volume 357 (2019) no. 2, pp. 216-220.

We consider the influence of the Aharonov–Bohm magnetic potential on the onset of superconductivity within the Ginzburg–Landau model. As the flux of the magnetic potential varies, we obtain a relation with the Little–Parks effect.

Nous considérons l'influence du potentiel magnétique d'Aharonov–Bohm sur le démarrage de la supraconductivité dans le modèle de Ginzburg–Landau. Lorsque le flux du potentiel magnétique varie, nous obtenons une relation avec l'effet Little–Parks.

Published online:
DOI: 10.1016/j.crma.2019.01.003

Ayman Kachmar 1; XingBin Pan 2

1 Department of Mathematics, Lebanese University, Nabatieh, Lebanon
2 Department of Mathematics, East China Normal University, and NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, Shanghai 200062, PR China
     author = {Ayman Kachmar and XingBin Pan},
     title = {Superconductivity and the {Aharonov{\textendash}Bohm} effect},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {216--220},
     publisher = {Elsevier},
     volume = {357},
     number = {2},
     year = {2019},
     doi = {10.1016/j.crma.2019.01.003},
     language = {en},
AU  - Ayman Kachmar
AU  - XingBin Pan
TI  - Superconductivity and the Aharonov–Bohm effect
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 216
EP  - 220
VL  - 357
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2019.01.003
LA  - en
ID  - CRMATH_2019__357_2_216_0
ER  - 
%0 Journal Article
%A Ayman Kachmar
%A XingBin Pan
%T Superconductivity and the Aharonov–Bohm effect
%J Comptes Rendus. Mathématique
%D 2019
%P 216-220
%V 357
%N 2
%I Elsevier
%R 10.1016/j.crma.2019.01.003
%G en
%F CRMATH_2019__357_2_216_0
Ayman Kachmar; XingBin Pan. Superconductivity and the Aharonov–Bohm effect. Comptes Rendus. Mathématique, Volume 357 (2019) no. 2, pp. 216-220. doi : 10.1016/j.crma.2019.01.003.

[1] W. Assaad; A. Kachmar The influence of magnetic steps on bulk superconductivity, Discrete Contin. Dyn. Syst., Ser. A, Volume 36 (2016) no. 12, pp. 6623-6643

[2] J.F. Braschke; M. Melgaard The Friedrichs extension of the Aharonov–Bohm Hamiltonian on a disk, Integral Equ. Oper. Theory, Volume 52 (2005) no. 3, pp. 419-436

[3] S. Fournais; B. Helffer On the third critical field in Ginzburg–Landau theory, Commun. Math. Phys., Volume 266 (2006) no. 1, pp. 153-196

[4] S. Fournais; B. Helffer Spectral Methods in Surface Superconductivity, Prog. Nonlinear Differ. Equ. Appl., vol. 77, Birkhäuser Boston Inc., Boston, MA, USA, 2010

[5] S. Fournais; M. Persson-Sundqvist Lack of diamagnetism and the Little–Parks effect, Commun. Math. Phys., Volume 337 (2015) no. 1, pp. 191-224

[6] T. Giorgi; D. Phillips The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model, SIAM J. Math. Anal., Volume 30 (1999) no. 2, pp. 341-359

[7] B. Helffer; M. Hoffmann-Ostenhof; T. Hoffmann-Ostenhof; M.P. Owen Nodal sets for ground states of Schrödinger operators with zero magnetic field in non-simply connected domains, Commun. Math. Phys., Volume 202 (1999) no. 3, pp. 629-649

[8] B. Helffer; T. Hoffmann-Ostenhof; N. Nadirashvili Periodic Schrödinger operators and Aharonov–Bohm Hamiltonians, Mosc. Math. J., Volume 3 (2003) no. 1, pp. 45-62

[9] C. Lèna Eigenvalues variations for Aharonov–Bohm operators, J. Math. Phys., Volume 56 (2015) no. 1

[10] W.A. Little; R.D. Parks Observation of quantum periodicity in the transition temperature of a superconducting cylinder, Phys. Rev. Lett., Volume 9 (1962), pp. 9-12

Cited by Sources:

Comments - Policy