We consider the influence of the Aharonov–Bohm magnetic potential on the onset of superconductivity within the Ginzburg–Landau model. As the flux of the magnetic potential varies, we obtain a relation with the Little–Parks effect.
Nous considérons l'influence du potentiel magnétique d'Aharonov–Bohm sur le démarrage de la supraconductivité dans le modèle de Ginzburg–Landau. Lorsque le flux du potentiel magnétique varie, nous obtenons une relation avec l'effet Little–Parks.
Accepted:
Published online:
Ayman Kachmar 1; XingBin Pan 2
@article{CRMATH_2019__357_2_216_0, author = {Ayman Kachmar and XingBin Pan}, title = {Superconductivity and the {Aharonov{\textendash}Bohm} effect}, journal = {Comptes Rendus. Math\'ematique}, pages = {216--220}, publisher = {Elsevier}, volume = {357}, number = {2}, year = {2019}, doi = {10.1016/j.crma.2019.01.003}, language = {en}, }
Ayman Kachmar; XingBin Pan. Superconductivity and the Aharonov–Bohm effect. Comptes Rendus. Mathématique, Volume 357 (2019) no. 2, pp. 216-220. doi : 10.1016/j.crma.2019.01.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.01.003/
[1] The influence of magnetic steps on bulk superconductivity, Discrete Contin. Dyn. Syst., Ser. A, Volume 36 (2016) no. 12, pp. 6623-6643
[2] The Friedrichs extension of the Aharonov–Bohm Hamiltonian on a disk, Integral Equ. Oper. Theory, Volume 52 (2005) no. 3, pp. 419-436
[3] On the third critical field in Ginzburg–Landau theory, Commun. Math. Phys., Volume 266 (2006) no. 1, pp. 153-196
[4] Spectral Methods in Surface Superconductivity, Prog. Nonlinear Differ. Equ. Appl., vol. 77, Birkhäuser Boston Inc., Boston, MA, USA, 2010
[5] Lack of diamagnetism and the Little–Parks effect, Commun. Math. Phys., Volume 337 (2015) no. 1, pp. 191-224
[6] The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model, SIAM J. Math. Anal., Volume 30 (1999) no. 2, pp. 341-359
[7] Nodal sets for ground states of Schrödinger operators with zero magnetic field in non-simply connected domains, Commun. Math. Phys., Volume 202 (1999) no. 3, pp. 629-649
[8] Periodic Schrödinger operators and Aharonov–Bohm Hamiltonians, Mosc. Math. J., Volume 3 (2003) no. 1, pp. 45-62
[9] Eigenvalues variations for Aharonov–Bohm operators, J. Math. Phys., Volume 56 (2015) no. 1
[10] Observation of quantum periodicity in the transition temperature of a superconducting cylinder, Phys. Rev. Lett., Volume 9 (1962), pp. 9-12
Cited by Sources:
Comments - Policy