Comptes Rendus
Partial differential equations
Stabilization in three-dimensional chemotaxis-growth model with indirect attractant production
[Stabilisation d'un modèle tridimensionnel de croissance chimiotaxique avec production d'attracteur indirecte]
Comptes Rendus. Mathématique, Volume 357 (2019) no. 6, pp. 513-519.

Cette Note traite du système de croissance chimiotaxique : ut=Δu(uv)+μu(1u), vt=Δvv+w, τwt+δw=u dans un domaine borné lisse ΩR3 avec une condition de flux zéro au bord et où μ, δ et τ sont des paramètres positifs donnés. Nous montrons que la solution (u,v,w) se stabilise exponentiellement vers la solution constante stationnaire (1,1/δ,1/δ) en norme L(Ω) lorsque t tend vers l'infini, pourvu que μ>0 et que toute donnée initiale positive ou nulle suffisamment lisse satisfasse u00. Ces hypothèses relaxent la condition μ>1/8δ2 de [8].

This paper deals with the chemotaxis-growth system: ut=Δu(uv)+μu(1u), vt=Δvv+w, τwt+δw=u in a smooth bounded domain ΩR3 with zero-flux boundary conditions, where μ, δ, and τ are given positive parameters. It is shown that the solution (u,v,w) exponentially stabilizes to the constant stationary solution (1,1δ,1δ) in the norm of L(Ω) as t provided that μ>0 and any given nonnegative and suitably smooth initial data (u0,v0,w0) fulfills u00, which extends the condition μ>18δ2 in [8].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.05.010
Ya Tian 1 ; Dan Li 2 ; Chunlai Mu 3

1 Key Lab of Intelligent Analysis and Decision on Complex Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2 School of Mathematics, South China University of Technology, Guangzhou 510641, China
3 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
@article{CRMATH_2019__357_6_513_0,
     author = {Ya Tian and Dan Li and Chunlai Mu},
     title = {Stabilization in three-dimensional chemotaxis-growth model with indirect attractant production},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {513--519},
     publisher = {Elsevier},
     volume = {357},
     number = {6},
     year = {2019},
     doi = {10.1016/j.crma.2019.05.010},
     language = {en},
}
TY  - JOUR
AU  - Ya Tian
AU  - Dan Li
AU  - Chunlai Mu
TI  - Stabilization in three-dimensional chemotaxis-growth model with indirect attractant production
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 513
EP  - 519
VL  - 357
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2019.05.010
LA  - en
ID  - CRMATH_2019__357_6_513_0
ER  - 
%0 Journal Article
%A Ya Tian
%A Dan Li
%A Chunlai Mu
%T Stabilization in three-dimensional chemotaxis-growth model with indirect attractant production
%J Comptes Rendus. Mathématique
%D 2019
%P 513-519
%V 357
%N 6
%I Elsevier
%R 10.1016/j.crma.2019.05.010
%G en
%F CRMATH_2019__357_6_513_0
Ya Tian; Dan Li; Chunlai Mu. Stabilization in three-dimensional chemotaxis-growth model with indirect attractant production. Comptes Rendus. Mathématique, Volume 357 (2019) no. 6, pp. 513-519. doi : 10.1016/j.crma.2019.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.05.010/

[1] K. Baghaei; M. Hesaaraki Global existence and boundedness of classical solutions for a chemotaxis model with logistic source, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 585-591

[2] K. Fujie; A. Ito; T. Yokota Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 1663-1763

[3] M.A. Herrero; J.J.L. Velázquez Singularity patterns in a chemotaxis model, Math. Ann., Volume 306 (1996), pp. 583-623

[4] M.A. Herrero; J.J.L. Velázquez A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl., Volume 24 (1997), pp. 633-683

[5] T. Hillen; K.J. Painter Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., Volume 26 (2001), pp. 280-301

[6] D. Horstmann; G. Wang Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., Volume 12 (2001), pp. 159-177

[7] D. Horstmann; M. Winkler Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., Volume 215 (2005), pp. 52-107

[8] B. Hu; Y. Tao To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., Volume 26 (2016), pp. 2111-2128

[9] E.F. Keller; L.A. Segel Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415

[10] K. Lin; C.L. Mu Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., Ser. A, Volume 36 (2016), pp. 5025-5046

[11] T. Nagai Blow-up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., Volume 6 (2001), pp. 37-55

[12] T. Nagai; T. Senba; K. Yoshida Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Volume 40 (1997), pp. 411-433

[13] K. Osaki; T. Tsujikawa; A. Yagi; M. Mimura Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., Volume 51 (2002), pp. 119-144

[14] K. Painter; T. Hillen Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., Volume 10 (2002), pp. 501-543

[15] S. Strohm; R.C. Tyson; J.A. Powell Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data, Bull. Math. Biol., Volume 75 (2013), pp. 1778-1797

[16] Y. Tao; M. Winkler Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity, J. Differ. Equ., Volume 252 (2012), pp. 692-715

[17] Y. Tao; M. Winkler Large time behavior in a multidimensional chemotaxis–haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., Volume 47 (2015), pp. 4229-4250

[18] Y. Tao; M. Winkler Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid, Z. Angew. Math. Phys., Volume 66 (2015), pp. 2555-2573

[19] Y. Tao; M. Winkler Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., Volume 19 (2017), pp. 3641-3678

[20] J.I. Tello; M. Winkler A chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 849-877

[21] L. Wang; Y. Li; C. Mu Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., Ser. A, Volume 34 (2014), pp. 789-802

[22] M. Winkler Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., Volume 283 (2010), pp. 1664-1673

[23] M. Winkler Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010), pp. 2889-2905

[24] M. Winkler Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1516-1537

[25] M. Winkler Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., Volume 384 (2011), pp. 261-272

[26] M. Winkler Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013), pp. 748-767

[27] M. Winkler Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., Volume 348 (2014), pp. 708-802

[28] M. Winkler Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differ. Equ., Volume 257 (2014), pp. 1056-1077

[29] M. Winkler; K.C. Djie Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., Volume 72 (2010), pp. 1044-1064

Cité par Sources :

Commentaires - Politique