For a pair of conjugate trigonometrical polynomials , with real coefficients and normalization the following extremal value is found:
Pour une paire de polynômes trigonométriques , à coefficients réels avec la normalisation , on trouve la valeur extrémale
Accepted:
Published online:
Dmitriy Dmitrishin 1; Andrey Smorodin 1; Alex Stokolos 2
@article{CRMATH_2019__357_7_591_0, author = {Dmitriy Dmitrishin and Andrey Smorodin and Alex Stokolos}, title = {On a family of extremal polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {591--596}, publisher = {Elsevier}, volume = {357}, number = {7}, year = {2019}, doi = {10.1016/j.crma.2019.06.010}, language = {en}, }
Dmitriy Dmitrishin; Andrey Smorodin; Alex Stokolos. On a family of extremal polynomials. Comptes Rendus. Mathématique, Volume 357 (2019) no. 7, pp. 591-596. doi : 10.1016/j.crma.2019.06.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.06.010/
[1] Bohr's power series theorem in several variables, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 2975-2979
[2] A theorem concerning power series, Proc. Lond. Math. Soc. (2), Volume 13 (1914), pp. 1-5
[3] Asymptotic Bohr radius for the polynomials in one complex variable, Invariant Subspaces of the Shift Operator, Contemp. Math., vol. 638, Amer. Math. Soc., Providence, RI, USA, 2015, pp. 39-43
[4] Extremal positive trigonometric polynomials (B. Bojanov, ed.), Approximation Theory: a Volume Dedicated to Blagovest Sendov, Darba, 2002, pp. 1-24
[5] Univalent polynomials and Koebe's one-quarter theorem, Anal. Math. Phys. (2019) | arXiv | DOI
[6] Fejér polynomials and control of nonlinear discrete systems, Constr. Approx. (2019) | arXiv | DOI
[7] Limitations of robust stability of a linear delayed feedback control, SIAM J. Control Optim., Volume 56 (2018), pp. 148-157
[8] Methods of harmonic analysis in nonlinear dynamics, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 367-370
[9] Estimates of Koebe radius for polynomials, 2018 | arXiv
[10] Methods of geometric function theory in classical and modern problems for polynomials, Russ. Math. Surv., Volume 67 (2012), pp. 599-684
[11] Über trigonometrische Polynome, J. Reine Angew. Math., Volume 146 (1916), pp. 53-82
[12] Asymptotics of the Bohr radius for polynomials of fixed degree, J. Math. Anal. Appl., Volume 338 (2008), pp. 1100-1107
[13] Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, vol. 26, American Mathematical Society, Providence, RI, USA, 1969
[14] Function Theory of One Complex Variable, Grad. Stud. Math., vol. 40, American Mathematical Society, Providence, RI, USA, 2006
[15] Bohr's radius for polynomials in one complex variable, Comput. Methods Funct. Theory, Volume 5 (2005), pp. 143-151
[16] Simultaneous Rayleigh-quotient minimization methods for , Linear Algebra Appl., Volume 34 (1980), pp. 195-234
[17] Reduction of the symmetric eigenproblem and related problems to standard form, Numer. Math., Volume 11 (1968), pp. 99-110
[18] Problems and Theorems in Analysis. II. Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry, Springer, Berlin, 1998
[19] Extremum problems for non-negative sine polynomials, Acta Sci. Math. Szeged, Volume 12 (1950), pp. 112-124
[20] Linear Algebra and Its Applications, Cengage Learning, Boston, MA, USA, 2006
[21] On univalent polynomials, J. Lond. Math. Soc., Volume 44 (1969), pp. 496-504
Cited by Sources:
Comments - Policy