[Une autre preuve de l'inégalité d'Alexandrov–Fenchel]
Nous donnons une preuve courte des inégalités d'Alexandrov–Fenchel qui repose sur des propriétés algébriques élémentaires ou de convexité des volumes mixtes de polytopes.
We present a short proof of the Alexandrov–Fenchel inequalities, which mixes elementary algebraic properties and convexity properties of mixed volumes of polytopes.
Accepté le :
Publié le :
Dario Cordero-Erausquin 1 ; Bo'az Klartag 2 ; Quentin Merigot 3 ; Filippo Santambrogio 4
@article{CRMATH_2019__357_8_676_0, author = {Dario Cordero-Erausquin and Bo'az Klartag and Quentin Merigot and Filippo Santambrogio}, title = {One more proof of the {Alexandrov{\textendash}Fenchel} inequality}, journal = {Comptes Rendus. Math\'ematique}, pages = {676--680}, publisher = {Elsevier}, volume = {357}, number = {8}, year = {2019}, doi = {10.1016/j.crma.2019.07.004}, language = {en}, }
TY - JOUR AU - Dario Cordero-Erausquin AU - Bo'az Klartag AU - Quentin Merigot AU - Filippo Santambrogio TI - One more proof of the Alexandrov–Fenchel inequality JO - Comptes Rendus. Mathématique PY - 2019 SP - 676 EP - 680 VL - 357 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2019.07.004 LA - en ID - CRMATH_2019__357_8_676_0 ER -
Dario Cordero-Erausquin; Bo'az Klartag; Quentin Merigot; Filippo Santambrogio. One more proof of the Alexandrov–Fenchel inequality. Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 676-680. doi : 10.1016/j.crma.2019.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.07.004/
[1] Geometric Inequalities, Springer, 1988 (Translated from Russian by A.B. Sosinskiĭ)
[2] Convex sets and Kähler manifolds, Advances in Differential Geometry and Topology, World Science Publishers, 1990, pp. 1-38
[3] Notions of Convexity, Birkhäuser, 1994
[4] Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, 2014
[5] Mixed volume and the Bochner method (preprint) | arXiv
[6] Two combinatorial applications of the Aleksandrov-Fenchel inequalities, J. Comb. Theory, Volume 31 (1981) no. 1, pp. 56-65
[7] A remark on the Alexandrov–Fenchel inequality, J. Funct. Anal., Volume 274 (2018) no. 7, pp. 2061-2088
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier