Comptes Rendus
Functional analysis/Geometry
One more proof of the Alexandrov–Fenchel inequality
Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 676-680.

We present a short proof of the Alexandrov–Fenchel inequalities, which mixes elementary algebraic properties and convexity properties of mixed volumes of polytopes.

Nous donnons une preuve courte des inégalités d'Alexandrov–Fenchel qui repose sur des propriétés algébriques élémentaires ou de convexité des volumes mixtes de polytopes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2019.07.004

Dario Cordero-Erausquin 1; Bo'az Klartag 2; Quentin Merigot 3; Filippo Santambrogio 4

1 Institut de mathématiques de Jussieu, Sorbonne Université, 4, place Jussieu, 75252 Paris cedex 05, France
2 Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
3 Laboratoire de mathématiques d'Orsay, Universié Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
4 Institut Camille-Jordan, Université Claude-Bernard – Lyon-1, 43, boulevard du 11-Novembre-1918, 69622 Villeurbanne cedex, France
@article{CRMATH_2019__357_8_676_0,
     author = {Dario Cordero-Erausquin and Bo'az Klartag and Quentin Merigot and Filippo Santambrogio},
     title = {One more proof of the {Alexandrov{\textendash}Fenchel} inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {676--680},
     publisher = {Elsevier},
     volume = {357},
     number = {8},
     year = {2019},
     doi = {10.1016/j.crma.2019.07.004},
     language = {en},
}
TY  - JOUR
AU  - Dario Cordero-Erausquin
AU  - Bo'az Klartag
AU  - Quentin Merigot
AU  - Filippo Santambrogio
TI  - One more proof of the Alexandrov–Fenchel inequality
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 676
EP  - 680
VL  - 357
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2019.07.004
LA  - en
ID  - CRMATH_2019__357_8_676_0
ER  - 
%0 Journal Article
%A Dario Cordero-Erausquin
%A Bo'az Klartag
%A Quentin Merigot
%A Filippo Santambrogio
%T One more proof of the Alexandrov–Fenchel inequality
%J Comptes Rendus. Mathématique
%D 2019
%P 676-680
%V 357
%N 8
%I Elsevier
%R 10.1016/j.crma.2019.07.004
%G en
%F CRMATH_2019__357_8_676_0
Dario Cordero-Erausquin; Bo'az Klartag; Quentin Merigot; Filippo Santambrogio. One more proof of the Alexandrov–Fenchel inequality. Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 676-680. doi : 10.1016/j.crma.2019.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.07.004/

[1] Yu.D. Burago; V.A. Zalgaller Geometric Inequalities, Springer, 1988 (Translated from Russian by A.B. Sosinskiĭ)

[2] M. Gromov Convex sets and Kähler manifolds, Advances in Differential Geometry and Topology, World Science Publishers, 1990, pp. 1-38

[3] L. Hörmander Notions of Convexity, Birkhäuser, 1994

[4] R. Schneider Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, 2014

[5] Y. Shenfeld; R. van Handel Mixed volume and the Bochner method (preprint) | arXiv

[6] R.P. Stanley Two combinatorial applications of the Aleksandrov-Fenchel inequalities, J. Comb. Theory, Volume 31 (1981) no. 1, pp. 56-65

[7] X. Wang A remark on the Alexandrov–Fenchel inequality, J. Funct. Anal., Volume 274 (2018) no. 7, pp. 2061-2088

Cited by Sources:

Comments - Policy