Comptes Rendus
Functional analysis/Geometry
One more proof of the Alexandrov–Fenchel inequality
[Une autre preuve de l'inégalité d'Alexandrov–Fenchel]
Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 676-680.

Nous donnons une preuve courte des inégalités d'Alexandrov–Fenchel qui repose sur des propriétés algébriques élémentaires ou de convexité des volumes mixtes de polytopes.

We present a short proof of the Alexandrov–Fenchel inequalities, which mixes elementary algebraic properties and convexity properties of mixed volumes of polytopes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.07.004

Dario Cordero-Erausquin 1 ; Bo'az Klartag 2 ; Quentin Merigot 3 ; Filippo Santambrogio 4

1 Institut de mathématiques de Jussieu, Sorbonne Université, 4, place Jussieu, 75252 Paris cedex 05, France
2 Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
3 Laboratoire de mathématiques d'Orsay, Universié Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
4 Institut Camille-Jordan, Université Claude-Bernard – Lyon-1, 43, boulevard du 11-Novembre-1918, 69622 Villeurbanne cedex, France
@article{CRMATH_2019__357_8_676_0,
     author = {Dario Cordero-Erausquin and Bo'az Klartag and Quentin Merigot and Filippo Santambrogio},
     title = {One more proof of the {Alexandrov{\textendash}Fenchel} inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {676--680},
     publisher = {Elsevier},
     volume = {357},
     number = {8},
     year = {2019},
     doi = {10.1016/j.crma.2019.07.004},
     language = {en},
}
TY  - JOUR
AU  - Dario Cordero-Erausquin
AU  - Bo'az Klartag
AU  - Quentin Merigot
AU  - Filippo Santambrogio
TI  - One more proof of the Alexandrov–Fenchel inequality
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 676
EP  - 680
VL  - 357
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2019.07.004
LA  - en
ID  - CRMATH_2019__357_8_676_0
ER  - 
%0 Journal Article
%A Dario Cordero-Erausquin
%A Bo'az Klartag
%A Quentin Merigot
%A Filippo Santambrogio
%T One more proof of the Alexandrov–Fenchel inequality
%J Comptes Rendus. Mathématique
%D 2019
%P 676-680
%V 357
%N 8
%I Elsevier
%R 10.1016/j.crma.2019.07.004
%G en
%F CRMATH_2019__357_8_676_0
Dario Cordero-Erausquin; Bo'az Klartag; Quentin Merigot; Filippo Santambrogio. One more proof of the Alexandrov–Fenchel inequality. Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 676-680. doi : 10.1016/j.crma.2019.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.07.004/

[1] Yu.D. Burago; V.A. Zalgaller Geometric Inequalities, Springer, 1988 (Translated from Russian by A.B. Sosinskiĭ)

[2] M. Gromov Convex sets and Kähler manifolds, Advances in Differential Geometry and Topology, World Science Publishers, 1990, pp. 1-38

[3] L. Hörmander Notions of Convexity, Birkhäuser, 1994

[4] R. Schneider Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, 2014

[5] Y. Shenfeld; R. van Handel Mixed volume and the Bochner method (preprint) | arXiv

[6] R.P. Stanley Two combinatorial applications of the Aleksandrov-Fenchel inequalities, J. Comb. Theory, Volume 31 (1981) no. 1, pp. 56-65

[7] X. Wang A remark on the Alexandrov–Fenchel inequality, J. Funct. Anal., Volume 274 (2018) no. 7, pp. 2061-2088

  • Daniel Hug; Paul A. Reichert Extremizers of the Alexandrov–Fenchel inequality within a new class of convex bodies, Advances in Geometry, Volume 25 (2025) no. 1, p. 13 | DOI:10.1515/advgeom-2024-0030
  • Lauren Nowak; Patrick O’Melveny; Dustin Ross Mixed Volumes of Normal Complexes, Discrete Computational Geometry (2024) | DOI:10.1007/s00454-024-00662-w
  • Franck Barthe; Mokshay Madiman Volumes of Subset Minkowski Sums and the Lyusternik Region, Discrete Computational Geometry, Volume 71 (2024) no. 3, p. 823 | DOI:10.1007/s00454-023-00606-w
  • Swee Hong Chan; Igor Pak Equality cases of the Alexandrov–Fenchel inequality are not in the polynomial hierarchy, Forum of Mathematics, Pi, Volume 12 (2024) | DOI:10.1017/fmp.2024.20
  • Daniel Hug; Paul A. Reichert The support of mixed area measures involving a new class of convex bodies, Journal of Functional Analysis, Volume 287 (2024) no. 11, p. 110622 | DOI:10.1016/j.jfa.2024.110622
  • Swee Hong Chan; Igor Pak, Proceedings of the 56th Annual ACM Symposium on Theory of Computing (2024), p. 875 | DOI:10.1145/3618260.3649646
  • Andrea Colesanti; Daniel Hug Geometric and Functional Inequalities, Convex Geometry, Volume 2332 (2023), p. 79 | DOI:10.1007/978-3-031-37883-6_3
  • Ramon van Handel The Local Logarithmic Brunn-Minkowski Inequality for Zonoids, Geometric Aspects of Functional Analysis, Volume 2327 (2023), p. 355 | DOI:10.1007/978-3-031-26300-2_14
  • Dustin Ross Lorentzian Fans, International Mathematics Research Notices, Volume 2023 (2023) no. 22, p. 19697 | DOI:10.1093/imrn/rnad239
  • James Melbourne; Gerardo Palafox-Castillo A discrete complement of Lyapunov’s inequality and its information theoretic consequences, The Annals of Applied Probability, Volume 33 (2023) no. 6A | DOI:10.1214/22-aap1919
  • Károly J. Böröczky; Daniel Hug Reverse Alexandrov–Fenchel inequalities for zonoids, Communications in Contemporary Mathematics, Volume 24 (2022) no. 08 | DOI:10.1142/s021919972150084x
  • Swee Hong Chan; Igor Pak Introduction to the combinatorial atlas, Expositiones Mathematicae, Volume 40 (2022) no. 4, p. 1014 | DOI:10.1016/j.exmath.2022.08.003
  • Jingbo Liu Minoration via mixed volumes and Cover’s problem for general channels, Probability Theory and Related Fields, Volume 183 (2022) no. 1-2, p. 315 | DOI:10.1007/s00440-022-01111-6
  • Jan Kotrbatý On Hodge-Riemann relations for translation-invariant valuations, Advances in Mathematics, Volume 390 (2021), p. 107914 | DOI:10.1016/j.aim.2021.107914

Cité par 14 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: