[Une autre preuve de l'inégalité d'Alexandrov–Fenchel]
Nous donnons une preuve courte des inégalités d'Alexandrov–Fenchel qui repose sur des propriétés algébriques élémentaires ou de convexité des volumes mixtes de polytopes.
We present a short proof of the Alexandrov–Fenchel inequalities, which mixes elementary algebraic properties and convexity properties of mixed volumes of polytopes.
Accepté le :
Publié le :
Dario Cordero-Erausquin 1 ; Bo'az Klartag 2 ; Quentin Merigot 3 ; Filippo Santambrogio 4
@article{CRMATH_2019__357_8_676_0, author = {Dario Cordero-Erausquin and Bo'az Klartag and Quentin Merigot and Filippo Santambrogio}, title = {One more proof of the {Alexandrov{\textendash}Fenchel} inequality}, journal = {Comptes Rendus. Math\'ematique}, pages = {676--680}, publisher = {Elsevier}, volume = {357}, number = {8}, year = {2019}, doi = {10.1016/j.crma.2019.07.004}, language = {en}, }
TY - JOUR AU - Dario Cordero-Erausquin AU - Bo'az Klartag AU - Quentin Merigot AU - Filippo Santambrogio TI - One more proof of the Alexandrov–Fenchel inequality JO - Comptes Rendus. Mathématique PY - 2019 SP - 676 EP - 680 VL - 357 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2019.07.004 LA - en ID - CRMATH_2019__357_8_676_0 ER -
Dario Cordero-Erausquin; Bo'az Klartag; Quentin Merigot; Filippo Santambrogio. One more proof of the Alexandrov–Fenchel inequality. Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 676-680. doi : 10.1016/j.crma.2019.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.07.004/
[1] Geometric Inequalities, Springer, 1988 (Translated from Russian by A.B. Sosinskiĭ)
[2] Convex sets and Kähler manifolds, Advances in Differential Geometry and Topology, World Science Publishers, 1990, pp. 1-38
[3] Notions of Convexity, Birkhäuser, 1994
[4] Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press, 2014
[5] Mixed volume and the Bochner method (preprint) | arXiv
[6] Two combinatorial applications of the Aleksandrov-Fenchel inequalities, J. Comb. Theory, Volume 31 (1981) no. 1, pp. 56-65
[7] A remark on the Alexandrov–Fenchel inequality, J. Funct. Anal., Volume 274 (2018) no. 7, pp. 2061-2088
- Extremizers of the Alexandrov–Fenchel inequality within a new class of convex bodies, Advances in Geometry, Volume 25 (2025) no. 1, p. 13 | DOI:10.1515/advgeom-2024-0030
- Mixed Volumes of Normal Complexes, Discrete Computational Geometry (2024) | DOI:10.1007/s00454-024-00662-w
- Volumes of Subset Minkowski Sums and the Lyusternik Region, Discrete Computational Geometry, Volume 71 (2024) no. 3, p. 823 | DOI:10.1007/s00454-023-00606-w
- Equality cases of the Alexandrov–Fenchel inequality are not in the polynomial hierarchy, Forum of Mathematics, Pi, Volume 12 (2024) | DOI:10.1017/fmp.2024.20
- The support of mixed area measures involving a new class of convex bodies, Journal of Functional Analysis, Volume 287 (2024) no. 11, p. 110622 | DOI:10.1016/j.jfa.2024.110622
- , Proceedings of the 56th Annual ACM Symposium on Theory of Computing (2024), p. 875 | DOI:10.1145/3618260.3649646
- Geometric and Functional Inequalities, Convex Geometry, Volume 2332 (2023), p. 79 | DOI:10.1007/978-3-031-37883-6_3
- The Local Logarithmic Brunn-Minkowski Inequality for Zonoids, Geometric Aspects of Functional Analysis, Volume 2327 (2023), p. 355 | DOI:10.1007/978-3-031-26300-2_14
- Lorentzian Fans, International Mathematics Research Notices, Volume 2023 (2023) no. 22, p. 19697 | DOI:10.1093/imrn/rnad239
- A discrete complement of Lyapunov’s inequality and its information theoretic consequences, The Annals of Applied Probability, Volume 33 (2023) no. 6A | DOI:10.1214/22-aap1919
- Reverse Alexandrov–Fenchel inequalities for zonoids, Communications in Contemporary Mathematics, Volume 24 (2022) no. 08 | DOI:10.1142/s021919972150084x
- Introduction to the combinatorial atlas, Expositiones Mathematicae, Volume 40 (2022) no. 4, p. 1014 | DOI:10.1016/j.exmath.2022.08.003
- Minoration via mixed volumes and Cover’s problem for general channels, Probability Theory and Related Fields, Volume 183 (2022) no. 1-2, p. 315 | DOI:10.1007/s00440-022-01111-6
- On Hodge-Riemann relations for translation-invariant valuations, Advances in Mathematics, Volume 390 (2021), p. 107914 | DOI:10.1016/j.aim.2021.107914
Cité par 14 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier