Comptes Rendus
Partial differential equations
Generalized good-λ techniques and applications to weighted Lorentz regularity for quasilinear elliptic equations
Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 664-670.

The aim of this paper is to give some sufficient conditions, called generalized good-λ conditions, to obtain the weighted Lorentz comparisons between two measurable functions. Moreover, we also present several applications of these results for the gradient estimates of solutions to quasilinear elliptic problems in weighted Lorentz spaces.

Le but de cette Note est de donner des conditions suffisantes, dites λ-bonnes généralisées, pour la comparaison de deux fonctions mesurables dans les espaces de Lorentz pondérés. De plus, nous présentons des applications de ces résultats aux estimations de gradient des solutions aux problèmes elliptiques quasi linéaires dans les espaces de Lorentz pondérés.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2019.08.002

Minh-Phuong Tran 1; Thanh-Nhan Nguyen 2

1 Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2 Department of Mathematics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
@article{CRMATH_2019__357_8_664_0,
     author = {Minh-Phuong Tran and Thanh-Nhan Nguyen},
     title = {Generalized good-\protect\emph{\ensuremath{\lambda}} techniques and applications to weighted {Lorentz} regularity for quasilinear elliptic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {664--670},
     publisher = {Elsevier},
     volume = {357},
     number = {8},
     year = {2019},
     doi = {10.1016/j.crma.2019.08.002},
     language = {en},
}
TY  - JOUR
AU  - Minh-Phuong Tran
AU  - Thanh-Nhan Nguyen
TI  - Generalized good-λ techniques and applications to weighted Lorentz regularity for quasilinear elliptic equations
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 664
EP  - 670
VL  - 357
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2019.08.002
LA  - en
ID  - CRMATH_2019__357_8_664_0
ER  - 
%0 Journal Article
%A Minh-Phuong Tran
%A Thanh-Nhan Nguyen
%T Generalized good-λ techniques and applications to weighted Lorentz regularity for quasilinear elliptic equations
%J Comptes Rendus. Mathématique
%D 2019
%P 664-670
%V 357
%N 8
%I Elsevier
%R 10.1016/j.crma.2019.08.002
%G en
%F CRMATH_2019__357_8_664_0
Minh-Phuong Tran; Thanh-Nhan Nguyen. Generalized good-λ techniques and applications to weighted Lorentz regularity for quasilinear elliptic equations. Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 664-670. doi : 10.1016/j.crma.2019.08.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.08.002/

[1] K. Adimurthi; N.C. Phuc Global Lorentz and Lorentz-Morrey estimates below the natural exponent for quasilinear equations, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 3, pp. 3107-3139

[2] S.-S. Byun; S. Ryu Global weighted estimates for the gradient of solutions to nonlinear elliptic equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013), pp. 291-313

[3] S.-S. Byun; L. Wang Elliptic equations with BMO coefficients in Reifenberg domains, Commun. Pure Appl. Math., Volume 57 (2004), pp. 1283-1310

[4] S.-S. Byun; L. Wang Elliptic equations with BMO nonlinearity in Reifenberg domains, Adv. Math., Volume 219 (2008) no. 6, pp. 1937-1971

[5] S.-S. Byun; L. Wang; S. Zhou Nonlinear elliptic equations with BMO coefficients in Reifenberg domains, J. Funct. Anal., Volume 250 (2007) no. 1, pp. 167-196

[6] L.A. Caffarelli; I. Peral On W1,p estimates for elliptic equations in divergence form, Commun. Pure Appl. Math., Volume 51 (1998) no. 1, pp. 1-21

[7] M. Colombo; G. Mingione Calderón–Zygmund estimates ans non-uniformly elliptic operators, J. Funct. Anal., Volume 136 (2016) no. 4, pp. 1416-1478

[8] F. Duzaar; G. Mingione Gradient estimates via linear and nonlinear potentials, J. Funct. Anal., Volume 259 (2010), pp. 2961-2998

[9] F. Duzaar; G. Mingione Gradient estimates via non-linear potentials, Amer. J. Math., Volume 133 (2011), pp. 1093-1149

[10] L. Grafakos Classical and Modern Fourier Analysis, Pearson/Prentice Hall, 2004

[11] M. Kardar; G. Parisi; Y.-C. Zhang Dynamic scaling of growing interfaces, Phys. Rev. Lett., Volume 56 (1986), pp. 889-892

[12] J. Kinnunen The Hardy-Littlewood maximal function of a Sobolev function, Isr. J. Math., Volume 100 (1997), pp. 117-124

[13] J. Kinnunen; E. Saksman Regularity of the fractional maximal function, Bull. Lond. Math. Soc., Volume 35 (2003), pp. 529-535

[14] J. Krug; H. Spohn Universality classes for deterministic surface growth, Phys. Rev. A (3), Volume 38 (1988), pp. 4271-4283

[15] T. Kuusi; G. Mingione Linear potentials in nonlinear potential theory, Arch. Ration. Mech. Anal., Volume 207 (2013) no. 1, pp. 215-246

[16] T. Mengesha; N.C. Phuc Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains, J. Differ. Equ., Volume 250 (2011) no. 5, pp. 2485-2507

[17] T. Mengesha; N.C. Phuc Global estimates for quasilinear elliptic equations on Reifenberg flat domains, Arch. Ration. Mech. Anal., Volume 203 (2012) no. 1, pp. 189-216

[18] G. Mingione The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (V), Volume 6 (2007), pp. 195-261

[19] Q.-H. Nguyen Potential estimates and quasilinear parabolic equations with measure data | arXiv

[20] Q.-H. Nguyen; N.C. Phuc Good-λ and Muckenhoupt–Wheeden type bounds, with applications to quasilinear elliptic equations with gradient power source terms and measure data, Math. Ann., Volume 374 (2019), pp. 67-98

[21] N.C. Phuc Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations, Adv. Math., Volume 250 (2014), pp. 387-419

[22] M.-P. Tran Good-λ type bounds of quasilinear elliptic equations for the singular case, Nonlinear Anal., Volume 178 (2019), pp. 266-281

[23] M.-P. Tran; T.-N. Nguyen Existence of a renormalized solution to the quasilinear Riccati-type equation in Lorentz spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 357 (2019), pp. 59-65

[24] M.-P. Tran; T.-N. Nguyen Lorentz-Morrey global bounds for singular quasilinear elliptic equations with measure data, Commun. Contemp. Math. (2019) | DOI

[25] M.-P. Tran; T.-N. Nguyen New gradient estimates for solutions to quasilinear divergence form elliptic equations with general Dirichlet boundary data, J. Differ. Equ. (2019) | DOI

Cited by Sources:

Comments - Policy