[Estimation de stabilité en diffusion inverse pour une particule quantique en présence d'un potentiel à courte portée]
Dans cet article, nous considérons le problème de la diffusion inverse pour l'opérateur de Schrödinger avec un potentiel électrique à courte portée. Nous prouvons en dimension que la connaissance de l'opérateur de diffusion détermine le potentiel électrique et nous établissons une estimation de stabilité de type Hölder pour la détermination du potentiel électrique à courte portée.
In this paper we consider the inverse scattering problem for the Schrödinger operator with short-range electric potential. We prove in dimension that the knowledge of the scattering operator determines the electric potential and we establish Hölder-type stability in determining the short range electric potential.
Accepté le :
Publié le :
Mourad Bellassoued 1 ; Luc Robbiano 2
@article{CRMATH_2019__357_10_784_0, author = {Mourad Bellassoued and Luc Robbiano}, title = {Stability estimate in the inverse scattering for a single quantum particle in an external short-range potential}, journal = {Comptes Rendus. Math\'ematique}, pages = {784--798}, publisher = {Elsevier}, volume = {357}, number = {10}, year = {2019}, doi = {10.1016/j.crma.2019.09.009}, language = {en}, }
TY - JOUR AU - Mourad Bellassoued AU - Luc Robbiano TI - Stability estimate in the inverse scattering for a single quantum particle in an external short-range potential JO - Comptes Rendus. Mathématique PY - 2019 SP - 784 EP - 798 VL - 357 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2019.09.009 LA - en ID - CRMATH_2019__357_10_784_0 ER -
%0 Journal Article %A Mourad Bellassoued %A Luc Robbiano %T Stability estimate in the inverse scattering for a single quantum particle in an external short-range potential %J Comptes Rendus. Mathématique %D 2019 %P 784-798 %V 357 %N 10 %I Elsevier %R 10.1016/j.crma.2019.09.009 %G en %F CRMATH_2019__357_10_784_0
Mourad Bellassoued; Luc Robbiano. Stability estimate in the inverse scattering for a single quantum particle in an external short-range potential. Comptes Rendus. Mathématique, Volume 357 (2019) no. 10, pp. 784-798. doi : 10.1016/j.crma.2019.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.09.009/
[1] Geometric approach to inverse scattering for the Schrödinger equation with magnetic and electric potentials, J. Math. Phys., Volume 38 (1997) no. 6, pp. 2761-2773
[2] Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map, J. Math. Anal. Appl., Volume 343 (2008) no. 2, pp. 1036-1046
[3] Recovering the potential from Cauchy data in two dimensions, J. Inverse Ill-Posed Probl., Volume 16 (2008), pp. 19-33
[4] Propagation properties of quantum scattering states, J. Funct. Anal., Volume 52 (1983), pp. 219-251
[5] Quantum scattering with long-range magnetic fields (M. Demuth; B. Gramsch; B.-W. Schulze, eds.), Operator Calculus and Spectral Theory, Operator Theory: Advances and Applications, vol. 57, Birkhäuser, Basel, Switzerland, 1992, pp. 61-70
[6] The geometrical approach to multidimensional inverse scattering, J. Math. Phys., Volume 36 (1995), pp. 3902-3921
[7] Inverse scattering problems for the Schrödinger equation with magnetic potential at a fixed energy, Commun. Math. Phys., Volume 173 (1995), pp. 199-224
[8] Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials, Commun. Math. Phys., Volume 174 (1995), pp. 409-446
[9] Inverse scattering at fixed energy on surfaces with Euclidean ends, Commun. Math. Phys., Volume 303 (2011), pp. 761-784
[10] The Analysis of Linear Partial Differential Operators, Vol. I, II, Springer-Verlag, Berlin, 1983
[11] Explicitly recovering asymptotics of short range potentials, Commun. Partial Differ. Equ., Volume 25 (2000), pp. 1907-1923
[12] Determining asymptotics of magnetic fields from fixed energy scattering data, Asymptot. Anal., Volume 21 (1999), pp. 61-70
[13] Geometrical approach to inverse scattering for the Dirac equation, J. Math. Phys., Volume 38 (1997), pp. 39-48
[14] Geometric Scattering Theory, Cambridge University Press, 1995
[15] Reconstructions from boundary measurements, Ann. of Math. (2), Volume 128 (1988), pp. 531-576
[16] Construction of potentials from the phase shifts at fixed energy, J. Math. Phys., Volume 3 (1962), pp. 75-82
[17] A Stationary Approach to Inverse Scattering for Schrödinger Operators with First Order Perturbations, Université de Nantes, France, 1996 (Rapport de recherche 96/4-2)
[18] Inverse Scattering for Schrödinger Operators with First Order Perturbations: The Long-Range Case, Université de Nantes, France, 1996 (Rapport de recherche 96/5-2)
[19] A stationary approach to inverse scattering for Schröinger operators with first order perturbation, Commun. Partial Differ. Equ., Volume 22 (1997), pp. 527-553
[20] An inverse scattering problem with the Aharonov-Bohm effect, J. Math. Phys., Volume 41 (2000), p. 5223
[21] A multidimensional inverse spectral problem for the equation , Funct. Anal. Appl., Volume 22 (1988), pp. 263-272
[22] The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential, Commun. Math. Phys., Volume 161 (1994), pp. 569-595
[23] The -equation in the multidimensional inverse scattering problem, Russ. Math. Surv., Volume 42 (1987), pp. 109-180
[24] Recovery of the potential from fixed energy scattering data, Inverse Probl., Volume 4 (1988), pp. 877-886
[25] Methods of Modern Mathematical Physics, Vol. III. Scattering Theory, Academic Press, New York, 1979
[26] Asymptotic properties of the potentials in the inverse-scattering problem at fixed energy, J. Math. Phys., Volume 7 (1966), pp. 1515-1531
[27] Some properties of the scattering amplitude and the inverse scattering problem, Osaka J. Math., Volume 19 (1982), pp. 527-547
[28] A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), Volume 125 (1987), pp. 153-169
[29] Inverse boundary value problems and applications, Astérisque, Volume 207 (1992), pp. 153-211
[30] Fixed energy inverse problem for exponentially decreasing potentials, Methods Appl. Anal., Volume 9 (2002), pp. 239-248
[31] Multidimensional inverse scattering in an electric field, J. Funct. Anal., Volume 139 (1996) no. 2, pp. 441-465
[32] The Aharonov–Bohm effect and time-dependent inverse scattering theory, Inverse Probl., Volume 18 (2002) no. 4, pp. 1041-1056
[33] Completeness of averaged scattering solutions, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 675-691
[34] On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity, Inverse Probl., Volume 21 (2005), pp. 1937-1952
Cité par Sources :
Commentaires - Politique