[Estimation de stabilité en diffusion inverse pour une particule quantique en présence d'un potentiel à courte portée]
Dans cet article, nous considérons le problème de la diffusion inverse pour l'opérateur de Schrödinger avec un potentiel électrique à courte portée. Nous prouvons en dimension
In this paper we consider the inverse scattering problem for the Schrödinger operator with short-range electric potential. We prove in dimension
Accepté le :
Publié le :
Mourad Bellassoued 1 ; Luc Robbiano 2
@article{CRMATH_2019__357_10_784_0, author = {Mourad Bellassoued and Luc Robbiano}, title = {Stability estimate in the inverse scattering for a single quantum particle in an external short-range potential}, journal = {Comptes Rendus. Math\'ematique}, pages = {784--798}, publisher = {Elsevier}, volume = {357}, number = {10}, year = {2019}, doi = {10.1016/j.crma.2019.09.009}, language = {en}, }
TY - JOUR AU - Mourad Bellassoued AU - Luc Robbiano TI - Stability estimate in the inverse scattering for a single quantum particle in an external short-range potential JO - Comptes Rendus. Mathématique PY - 2019 SP - 784 EP - 798 VL - 357 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2019.09.009 LA - en ID - CRMATH_2019__357_10_784_0 ER -
%0 Journal Article %A Mourad Bellassoued %A Luc Robbiano %T Stability estimate in the inverse scattering for a single quantum particle in an external short-range potential %J Comptes Rendus. Mathématique %D 2019 %P 784-798 %V 357 %N 10 %I Elsevier %R 10.1016/j.crma.2019.09.009 %G en %F CRMATH_2019__357_10_784_0
Mourad Bellassoued; Luc Robbiano. Stability estimate in the inverse scattering for a single quantum particle in an external short-range potential. Comptes Rendus. Mathématique, Volume 357 (2019) no. 10, pp. 784-798. doi : 10.1016/j.crma.2019.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.09.009/
[1] Geometric approach to inverse scattering for the Schrödinger equation with magnetic and electric potentials, J. Math. Phys., Volume 38 (1997) no. 6, pp. 2761-2773
[2] Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map, J. Math. Anal. Appl., Volume 343 (2008) no. 2, pp. 1036-1046
[3] Recovering the potential from Cauchy data in two dimensions, J. Inverse Ill-Posed Probl., Volume 16 (2008), pp. 19-33
[4] Propagation properties of quantum scattering states, J. Funct. Anal., Volume 52 (1983), pp. 219-251
[5] Quantum scattering with long-range magnetic fields (M. Demuth; B. Gramsch; B.-W. Schulze, eds.), Operator Calculus and Spectral Theory, Operator Theory: Advances and Applications, vol. 57, Birkhäuser, Basel, Switzerland, 1992, pp. 61-70
[6] The geometrical approach to multidimensional inverse scattering, J. Math. Phys., Volume 36 (1995), pp. 3902-3921
[7] Inverse scattering problems for the Schrödinger equation with magnetic potential at a fixed energy, Commun. Math. Phys., Volume 173 (1995), pp. 199-224
[8] Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials, Commun. Math. Phys., Volume 174 (1995), pp. 409-446
[9] Inverse scattering at fixed energy on surfaces with Euclidean ends, Commun. Math. Phys., Volume 303 (2011), pp. 761-784
[10] The Analysis of Linear Partial Differential Operators, Vol. I, II, Springer-Verlag, Berlin, 1983
[11] Explicitly recovering asymptotics of short range potentials, Commun. Partial Differ. Equ., Volume 25 (2000), pp. 1907-1923
[12] Determining asymptotics of magnetic fields from fixed energy scattering data, Asymptot. Anal., Volume 21 (1999), pp. 61-70
[13] Geometrical approach to inverse scattering for the Dirac equation, J. Math. Phys., Volume 38 (1997), pp. 39-48
[14] Geometric Scattering Theory, Cambridge University Press, 1995
[15] Reconstructions from boundary measurements, Ann. of Math. (2), Volume 128 (1988), pp. 531-576
[16] Construction of potentials from the phase shifts at fixed energy, J. Math. Phys., Volume 3 (1962), pp. 75-82
[17] A Stationary Approach to Inverse Scattering for Schrödinger Operators with First Order Perturbations, Université de Nantes, France, 1996 (Rapport de recherche 96/4-2)
[18] Inverse Scattering for Schrödinger Operators with First Order Perturbations: The Long-Range Case, Université de Nantes, France, 1996 (Rapport de recherche 96/5-2)
[19] A stationary approach to inverse scattering for Schröinger operators with first order perturbation, Commun. Partial Differ. Equ., Volume 22 (1997), pp. 527-553
[20] An inverse scattering problem with the Aharonov-Bohm effect, J. Math. Phys., Volume 41 (2000), p. 5223
[21] A multidimensional inverse spectral problem for the equation
[22] The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential, Commun. Math. Phys., Volume 161 (1994), pp. 569-595
[23] The
[24] Recovery of the potential from fixed energy scattering data, Inverse Probl., Volume 4 (1988), pp. 877-886
[25] Methods of Modern Mathematical Physics, Vol. III. Scattering Theory, Academic Press, New York, 1979
[26] Asymptotic properties of the potentials in the inverse-scattering problem at fixed energy, J. Math. Phys., Volume 7 (1966), pp. 1515-1531
[27] Some properties of the scattering amplitude and the inverse scattering problem, Osaka J. Math., Volume 19 (1982), pp. 527-547
[28] A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), Volume 125 (1987), pp. 153-169
[29] Inverse boundary value problems and applications, Astérisque, Volume 207 (1992), pp. 153-211
[30] Fixed energy inverse problem for exponentially decreasing potentials, Methods Appl. Anal., Volume 9 (2002), pp. 239-248
[31] Multidimensional inverse scattering in an electric field, J. Funct. Anal., Volume 139 (1996) no. 2, pp. 441-465
[32] The Aharonov–Bohm effect and time-dependent inverse scattering theory, Inverse Probl., Volume 18 (2002) no. 4, pp. 1041-1056
[33] Completeness of averaged scattering solutions, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 675-691
[34] On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity, Inverse Probl., Volume 21 (2005), pp. 1937-1952
Cité par Sources :
Commentaires - Politique