We establish the continuity of a surface as a function of its first two fundamental forms for several Fréchet topologies, which include in particular those of the space for the first fundamental form and of the space for the second fundamental form, for any .
On établit la continuité d'une surface en fonction de ses deux premières formes fondamentales pour plusieurs topologies de Fréchet, qui incluent en particulier celles de l'espace pour la première forme et de l'espace pour la deuxième forme, où .
Accepted:
Published online:
Philippe G. Ciarlet 1; Maria Malin 2; Cristinel Mardare 1
@article{CRMATH_2019__357_11-12_917_0, author = {Philippe G. Ciarlet and Maria Malin and Cristinel Mardare}, title = {Continuity of a surface in {Fr\'echet} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {917--921}, publisher = {Elsevier}, volume = {357}, number = {11-12}, year = {2019}, doi = {10.1016/j.crma.2019.10.010}, language = {en}, }
Philippe G. Ciarlet; Maria Malin; Cristinel Mardare. Continuity of a surface in Fréchet spaces. Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 917-921. doi : 10.1016/j.crma.2019.10.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.10.010/
[1] Sobolev Spaces, Academic Press, New York, 1975
[2] Continuity of a surface as a function of its two fundamental forms, J. Math. Pures Appl., Volume 82 (2002), pp. 253-274
[3] Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013
[4] Recovery of a surface with boundary and its continuity as a function of its two fundamental forms, Anal. Appl., Volume 3 (2005), pp. 99-117
[5] Nonlinear Korn inequalities in and immersions in , , considered as functions of their metric tensors in , J. Math. Pures Appl., Volume 105 (2016), pp. 873-906
[6] A surface in is a locally Lipschitz-continuous function of its fundamental forms in and , , J. Math. Pures Appl., Volume 124 (2019), pp. 300-318
[7] P.G. Ciarlet, M. Malin, C. Mardare, Continuity in Fréchet topologies of a surface as a function of its fundamental forms, in preparation.
[8] A Course in Differential Geometry, Springer, Berlin, 1978
[9] Differential Geometry: Curves – Surfaces – Manifolds, American Mathematical Society, Providence, 2002
[10] On Pfaff systems with coefficients and their applications in differential geometry, J. Math. Pures Appl., Volume 84 (2005), pp. 1659-1692
[11] Functional Analysis, McGraw-Hill, New York, 1973
Cited by Sources:
Comments - Policy