[Géométries des aiguilles de martensite dans les alliages à mémoire de forme]
Nous étudions la géométrie des domaines en forme d’aiguille dans les alliages à mémoire de forme. Les domaines en forme d’aiguille sont omniprésents dans les martensites près des interfaces macroscopiques entre régions laminées dans des directions différentes, ou près d’interfaces macroscopiques entre austénite et martensites jumelées. Leur géométrie résulte de l’influence relative de la non-convexité locale de la densité d’énergie effective et des interactions à longue portée (linéaires) engendrées par le champ de déformation élastique, et est pour le moment assez mal comprise. Nous présentons un modèle d’optimisation de forme bi-dimensionnel basé sur l’élasticité non-linéaire et étudions son approximation numérique. Nos résultats montrent que le profil effilé des aiguilles peut être expliqué dans le cadre de l’élasticité non-linéaire, mais pas dans le cadre linéarisé. L’amincissement et la flexion qui en résultent reproduisent les caractéristiques principales observées expérimentalement sur le NiAl.
We study the geometry of needle-shaped domains in shape-memory alloys. Needle-shaped domains are ubiquitously found in martensites around macroscopic interfaces between regions which are laminated in different directions, or close to macroscopic austenite/twinned-martensite interfaces. Their geometry results from the interplay of the local nonconvexity of the effective energy density with long-range (linear) interactions mediated by the elastic strain field, and is up to now poorly understood. We present a two-dimensional shape optimization model based on finite elasticity and discuss its numerical solution. Our results indicate that the tapering profile of the needles can be understood within finite elasticity, but not with linearized elasticity. The resulting tapering and bending reproduce the main features of experimental observations on NiAl.
Révisé le :
Accepté le :
Publié le :
Sergio Conti 1 ; Martin Lenz 2 ; Nora Lüthen 3 ; Martin Rumpf 1, 2 ; Barbara Zwicknagl 4
@article{CRMATH_2020__358_9-10_1047_0, author = {Sergio Conti and Martin Lenz and Nora L\"uthen and Martin Rumpf and Barbara Zwicknagl}, title = {Geometry of martensite needles in shape memory alloys}, journal = {Comptes Rendus. Math\'ematique}, pages = {1047--1057}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {9-10}, year = {2020}, doi = {10.5802/crmath.120}, language = {en}, }
TY - JOUR AU - Sergio Conti AU - Martin Lenz AU - Nora Lüthen AU - Martin Rumpf AU - Barbara Zwicknagl TI - Geometry of martensite needles in shape memory alloys JO - Comptes Rendus. Mathématique PY - 2020 SP - 1047 EP - 1057 VL - 358 IS - 9-10 PB - Académie des sciences, Paris DO - 10.5802/crmath.120 LA - en ID - CRMATH_2020__358_9-10_1047_0 ER -
%0 Journal Article %A Sergio Conti %A Martin Lenz %A Nora Lüthen %A Martin Rumpf %A Barbara Zwicknagl %T Geometry of martensite needles in shape memory alloys %J Comptes Rendus. Mathématique %D 2020 %P 1047-1057 %V 358 %N 9-10 %I Académie des sciences, Paris %R 10.5802/crmath.120 %G en %F CRMATH_2020__358_9-10_1047_0
Sergio Conti; Martin Lenz; Nora Lüthen; Martin Rumpf; Barbara Zwicknagl. Geometry of martensite needles in shape memory alloys. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1047-1057. doi : 10.5802/crmath.120. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.120/
[1] Fine phase mixtures as minimizers of the energy, Arch. Ration. Mech. Analysis, Volume 100 (1987), pp. 13-52 | DOI | MR | Zbl
[2] Microstructure of martensite: Why it forms and how it gives rise to the shape-memory effect, Oxford Series in Materials Modelling, 2, Oxford University Press, 2003 | Zbl
[3] Nano-structures at martensite macrotwin interfaces in NiAl, Acta Materialia, Volume 51 (2003) no. 5, pp. 1421-1436 | DOI
[4] Bending martensite needles in investigated by two-dimensional elasticity and high-resolution transmission electron microscopy, Phys. Rev. B, Volume 64 (2001), 144105 | DOI
[5] Analysis of austenite-martensite phase boundary and twinned microstructure in shape memory alloys: The role of twinning disconnections, Acta Materialia, Volume 164 (2019), pp. 520-529 | DOI
[6] Branched microstructures: scaling and asymptotic self-similarity, Commun. Pure Appl. Math., Volume 53 (2000) no. 11, pp. 1448-1474 | DOI | MR | Zbl
[7] Low volume-fraction microstructures in martensites and crystal plasticity, Math. Models Methods App. Sci., Volume 26 (2016), pp. 1319-1355 | DOI | MR | Zbl
[8] Optimization of the branching pattern in coherent phase transitions, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 6, pp. 639-644 | DOI | MR | Zbl
[9] Phase field methods: Microstructures, mechanical properties and complexity, C. R. Physique, Volume 11 (2010), pp. 245-256 | DOI
[10] Phonon anomalies and elastic constants of cubic from first principles, Phys. Rev. B, Volume 70 (2004), p. 064301 | DOI
[11] A polyconvex model for materials with cubic symmetry, Modelling and Simulation in Materials Science and Engineering, Volume 15 (2007) no. 5, pp. 451-467 | DOI
[12] Configurational mechanics of materials (Reinhold Kienzler; Gérard A. Maugin, eds.), CISM Courses and Lectures, 427, Springer, 2001 | Zbl
[13] Surface energy and microstructure in coherent phase transitions, Commun. Pure Appl. Math., Volume 47 (1994), pp. 405-435 | DOI | MR | Zbl
[14] Multiple twinning and variant-variant transformations in martensite: Phase-field approach, Phys. Rev. B, Volume 88 (2013), p. 054113 | DOI
[15] Theory and computation for the microstructure near the interface between twinned layers and a pure variant of martensite, Materials Science and Engineering. Ser. A, Volume 273-275 (1999), pp. 237-240 | DOI
[16] Computations of geometrically linear and nonlinear Ginzburg–Landau models for martensitic pattern formation, ESOMAT (2009), 03008 | DOI
[17] Simulated equilibrium shapes of ferroelastic needle domains, Journal of Physics: Condensed Matter, Volume 14 (2002) no. 3, pp. 657-664 | DOI
[18] Phase transitions in ferroelastic and co-elastic crystals, Cambridge University Press, 1990
[19] Mesoscopic structures in ferroelastic crystals: needle twins and right-angled domains, Journal of Physics: Condensed Matter, Volume 8 (1996) no. 44, pp. 8477-8495 | DOI
[20] Origin of stabilization of macrotwin boundaries in martensites, The European Physical Journal B, Volume 92 (2019) no. 1, p. 20 | DOI | MR
[21] A finite element analysis of the morphology of the twinned-to-detwinned interface observed in microstructure of the Cu–Al–Ni shape memory alloy, International Journal of Solids and Structures, Volume 48 (2011) no. 13, pp. 2005-2014 | DOI
[22] A way to search for multiferroic materials with unlikely combinations of physical properties, Magnetism and structure in functional materials (Springer Series in Materials Science), Volume 79 (2005)
[23] Energy barriers and hysteresis in martensitic phase transformations, Acta Materialia, Volume 57 (2009), pp. 4332-4352 | DOI
[24] Microstructures in low-hysteresis shape memory alloys: scaling regimes and optimal needle shapes, Arch. Ration. Mech. Anal., Volume 213 (2014) no. 2, pp. 355-421 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique