Comptes Rendus
Histoire des mathématiques
La vie et l’oeuvre de John Tate
Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1129-1133.
Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.125

Jean-Pierre Serre 1

1 Collège de France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_11-12_1129_0,
     author = {Jean-Pierre Serre},
     title = {La vie et l{\textquoteright}oeuvre de {John} {Tate}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1129--1133},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.125},
     language = {fr},
}
TY  - JOUR
AU  - Jean-Pierre Serre
TI  - La vie et l’oeuvre de John Tate
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1129
EP  - 1133
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.125
LA  - fr
ID  - CRMATH_2020__358_11-12_1129_0
ER  - 
%0 Journal Article
%A Jean-Pierre Serre
%T La vie et l’oeuvre de John Tate
%J Comptes Rendus. Mathématique
%D 2020
%P 1129-1133
%V 358
%N 11-12
%I Académie des sciences, Paris
%R 10.5802/crmath.125
%G fr
%F CRMATH_2020__358_11-12_1129_0
Jean-Pierre Serre. La vie et l’oeuvre de John Tate. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1129-1133. doi : 10.5802/crmath.125. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.125/

[1] Michael Artin; John Tate; Michel Van den Bergh Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 33-85 (reproduit dans [4, n°61]) | MR | Zbl

[2] Hyman Bass; John Tate The Milnor ring of a global field, Algebraic K-theory II. “Classical” algebraic K-theory, and connections with arithmetic (Lecture Notes in Mathematics), Volume 342, Springer, 1973, pp. 349-446 (reproduit dans [4, n°37]) | MR | Zbl

[3] Jonathan Lubin; John Tate Formal complex multiplication in local fields, Ann. Math., Volume 81 (1965), pp. 380-387 (reproduit dans [4, n°20]) | DOI | MR | Zbl

[4] Collected Works of John Tate (Barry Mazur; Jean-Pierre Serre, eds.), American Mathematical Society, 2016 (2 vol.)

[5] Barry Mazur; John Tate Refined conjectures of the “Birch and Swinnerton–Dyer type”, Duke Math. J., Volume 54 (1987), pp. 711-750 (reproduit dans [4, n°59]) | MR | Zbl

[6] Frans Oort; John Tate Group schemes of prime order, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 1-21 (reproduit dans [4, n°34]) | Numdam | MR | Zbl

[7] Jean-Pierre Serre; John Tate Good reduction of abelian varieties, Ann. Math., Volume 88 (1968), pp. 492-517 (reproduit dans [4, n°33]) | DOI | MR | Zbl

[8] John Tate Rational points on elliptic curves over complete fields (manuscrit non publié, Harvard, 1959, reproduit dans [4, n°69])

[9] John Tate The higher dimensional groups of class field theory, Ann. Math., Volume 56 (1952), pp. 294-297 (reproduit dans [4, n°7]) | DOI | MR | Zbl

[10] John Tate Duality theorems in Galois cohomology over number fields, Proc. Int. Congr. Math. (Stockholm, 1962), Inst. Mittag-Leffler, 1963, pp. 288-295 (reproduit dans [4, n°18]) | Zbl

[11] John Tate Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry, Harper & Row, 1965, pp. 93-110 (reproduit dans [4, n°21], complété dans [16]) | Zbl

[12] John Tate Endomorphisms of abelian varieties over finite fields, Invent. Math., Volume 2 (1966), pp. 134-144 (reproduit dans [4, n°27]) | DOI | MR | Zbl

[13] John Tate Fourier analysis in number fields and Hecke’s zeta functions, Algebraic number theory, Academic Press Inc., 1967 p. 305-347, PhD Thesis, Princeton (USA), 1950, reproduit dans [4, n°1]

[14] John Tate p-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966), Springer, 1967, pp. 158-163 (reproduit dans [4, n°30]) | DOI | Zbl

[15] John Tate Rigid analytic spaces, Invent. Math., Volume 12 (1971), pp. 257-289 notes IHES (1962), reproduit dans [4, n°36] | DOI | MR | Zbl

[16] John Tate Conjectures on algebraic cycles in -adic cohomology, Motives (Part I) (Proceedings of Symposia in Pure Mathematics), Volume 55, American Mathematical Society, 1994, pp. 71-83 (reproduit dans [4, n°65]) | DOI | MR | Zbl

[17] John Tate Autobiography, The Abel Prize 2008–2012, Springer, 2014, pp. 249-257 | DOI | Zbl

[18] Pierre Colmez Tate’s work and the Serre–Tate correspondence, Bull. Am. Math. Soc., Volume 54 (2017) no. 4, pp. 559-573 | DOI | MR | Zbl

[19] Correspondance Serre–Tate (Pierre Colmez; Jean-Pierre Serre, eds.), Documents Mathématiques, 13-14, Société Mathématique de France, 2015 (2 vol.) | Zbl

[20] Pierre Deligne; Michael Rapoport Les schémas de modules de courbes elliptiques, Modular Functions of One Variable II (Lecture Notes in Mathematics), Volume 349, Springer, 1973, pp. 143-316 | DOI | Zbl

[21] Gerd Faltings Endlichkeitssäze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983), pp. 349-366 erratum in ibid. 75 (1984), p. 381 | DOI

[22] Gerd Faltings p-adic Hodge theory, J. Am. Math. Soc., Volume 1 (1988) no. 1, pp. 255-299 | MR | Zbl

[23] Jean-Marc Fontaine; William Messing p-adic periods and p-adic etale cohomology, Current trends in arithmetical algebraic geometry (Contemporary Mathematics), Volume 67, American Mathematical Society, 1987, pp. 179-207 | DOI | Zbl

[24] James S. Milne Weil–Châtelet groups over local fields, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 273-284 | DOI | Numdam | Zbl

[25] James S. Milne The work of Tate, John, The Abel Prize 2008–2012, Springer, 2014, pp. 259-334 (contient une analyse détaillée et une bibliographie des publications de Tate) | DOI | Zbl

[26] Jean-Pierre Serre Résumé des cours de 1965–1966, Oeuvres II, 1965, pp. 315-324

Cité par Sources :

Commentaires - Politique