Let and be abelian varieties over a number field . We prove that if there exists a non-trivial morphism of abelian varieties between reductions of and at a sufficiently high percentage of primes, then there exists a non-trivial morphism over . Along the way, we give an upper bound for the number of components of a reductive subgroup of whose intersection with the union of -rational conjugacy classes of is Zariski-dense. This can be regarded as a generalization of the Minkowski–Schur theorem on faithful representations of finite groups with rational characters.
Soient et deux variétés abéliennes sur un corps de nombres . Nous montrons que, s’il existe un morphisme non trivial de variétés abéliennes entre réductions de et pour une proportion suffisamment grande d’idéaux premiers, il existe un morphisme non trivial sur . Nous donnons également une majoration du nombre du composantes d’un sous-groupe réductif de dont l’intersection avec l’union des classes de conjugaison -rationnelles de est dense pour la topologie de Zariski ; c’est une généralisation d’un théorème de Minkowski–Schur sur les représentations fidèles des groupes finis à caractère rationnel.
Revised:
Accepted:
Published online:
Chandrashekhar B. Khare 1; Michael Larsen 2
@article{CRMATH_2020__358_9-10_1085_0, author = {Chandrashekhar B. Khare and Michael Larsen}, title = {Abelian varieties with isogenous reductions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1085--1089}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {9-10}, year = {2020}, doi = {10.5802/crmath.129}, language = {en}, }
Chandrashekhar B. Khare; Michael Larsen. Abelian varieties with isogenous reductions. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1085-1089. doi : 10.5802/crmath.129. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.129/
[1] Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer, 1991 | MR | Zbl
[2] On Jordan’s theorem for complex linear groups, J. Group Theory, Volume 10 (2007) no. 4, pp. 411-423 | MR | Zbl
[3] Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983) no. 3, pp. 349-366 | DOI | Zbl
[4] A connectedness criterion for -adic Galois representations, Isr. J. Math., Volume 97 (1997), pp. 1-10 | DOI | MR | Zbl
[5] -adic algebraic monodromy groups, cocharacters, and the Mumford–Tate conjecture, J. Reine Angew. Math., Volume 495 (1998), pp. 187-237 | DOI | MR | Zbl
[6] Relations between cusp forms sharing Hecke eigenvalues (2007) (https://arxiv.org/abs/2007.14639)
[7] On strong multiplicity one for -adic representations, Int. Math. Res. Not., Volume 1998 (1998) no. 3, pp. 161-172 | DOI | MR | Zbl
[8] Quelques applications du théorème de densité de Chebotarev, Publ. Math., Inst. Hautes Étud. Sci., Volume 54 (1981), pp. 323-401 | Numdam | Zbl
[9] Finite groups: an introduction, Surveys of Modern Mathematics, 10, Higher Education Press, 2016 (With assistance in translation provided by Garving K. Luli and Pin Yu.) | MR | Zbl
[10] Reductive groups, Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society, 1979, pp. 3-27 | DOI | MR | Zbl
[11] Endomorphisms of abelian varieties over finite fields, Invent. Math., Volume 2 (1966), pp. 134-144 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy