We re-prove the classification of motions of an octahedron — obtained by Bricard at the beginning of the XX century — by means of combinatorial objects satisfying some elementary rules. The explanations of these rules rely on the use of a well-known creation of modern algebraic geometry, the moduli space of stable rational curves with marked points, for the description of configurations of graphs on the sphere. Once one accepts the objects and the rules, the classification becomes elementary (though not trivial) and can be enjoyed without the need of a very deep background on the topic.
Dans cet article, on donne une preuve alternative de la classification des mouvements d’un octaèdre, originalement obtenue par Bricard au début du XX siècle. On utilise une construction combinatoire avec un certain nombre de règles essentielles. Ces règles reposent sur une machinerie bien connue dans la géométrie algébrique moderne : l’espace de modules des courbes rationnelles stables avec des points marqués, utilisé pour codifier les configurations de graphes sur la sphère. On introduit un certain nombre d’objets et de règles : une fois que l’on les assume, la classification des mouvements d’un octaèdre telle que l’on expose devient élémentaire (bien que pas triviale) et peut être appréciée par le lecteur sans besoin de connaissances préalables très approfondies sur le sujet. We thank Celeste Damiani for helping us with the translation into French.
Revised:
Accepted:
Published online:
Matteo Gallet 1; Georg Grasegger 2; Jan Legerský 3, 4; Josef Schicho 4
@article{CRMATH_2021__359_1_7_0, author = {Matteo Gallet and Georg Grasegger and Jan Legersk\'y and Josef Schicho}, title = {Combinatorics of {Bricard{\textquoteright}s} octahedra}, journal = {Comptes Rendus. Math\'ematique}, pages = {7--38}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {1}, year = {2021}, doi = {10.5802/crmath.132}, language = {en}, }
TY - JOUR AU - Matteo Gallet AU - Georg Grasegger AU - Jan Legerský AU - Josef Schicho TI - Combinatorics of Bricard’s octahedra JO - Comptes Rendus. Mathématique PY - 2021 SP - 7 EP - 38 VL - 359 IS - 1 PB - Académie des sciences, Paris DO - 10.5802/crmath.132 LA - en ID - CRMATH_2021__359_1_7_0 ER -
Matteo Gallet; Georg Grasegger; Jan Legerský; Josef Schicho. Combinatorics of Bricard’s octahedra. Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 7-38. doi : 10.5802/crmath.132. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.132/
[1] The Dehn invariants of the Bricard octahedra, J. Geom., Volume 99 (2010) no. 1–2, pp. 1-13 | DOI | MR | Zbl
[2] Flexible suspensions with a hexagonal equator, Ill. J. Math., Volume 55 (2011) no. 1, pp. 127-155 | DOI | MR | Zbl
[3] An analysis of the Bricard linkages, Mech. Mach. Theory, Volume 15 (1980) no. 4, pp. 267-286 | DOI
[4] On Bricard’s doubly collapsible octahedron and its planar, spherical and skew counterparts, J. Franklin Inst., Volume 332B (1995) no. 6, pp. 657-679 | DOI | MR | Zbl
[5] On the skew network corresponding to Bricard’s doubly collapsible octahedron, Proc. Inst. Mech. Eng. C, Volume 223 (2009) no. 5, pp. 1213-1221 | DOI
[6] Deformable octahedra, Proc. Lond. Math. Soc., Volume 10 (1912) no. 1, pp. 309-343 | DOI | Zbl
[7] Mémoire sur la théorie de l’octaèdre articulé, J. Math. Pures Appl., Volume 3 (1897), pp. 113-148 | Zbl
[8] Leçons de cinématique. I Cinématique théoretique, Gauthier-Villars, 1926 | Zbl
[9] Leçons de cinématique. II Cinématique appliquée, Gauthier-Villars, 1927 | Zbl
[10] Configuration spaces of Bricard octahedra, Ukr. Geom. Sb., Volume 33 (1990), pp. 36-41 | DOI | Zbl
[11] Recherche sur les polyèdres — premier mémoire, J. Éc. Polytech., Math., Volume 9 (1813) no. 16, pp. 66-86 (available at https://gallica.bnf.fr/ark:/12148/bpt6k90193x/f13)
[12] A counterexample to the rigidity conjecture for polyhedra, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 333-338 | DOI | Numdam | Zbl
[13] The rigidity of suspensions, J. Differ. Geom., Volume 113 (1978) no. 3, pp. 399-408 | DOI | MR | Zbl
[14] Dehn invariant and scissors congruence of flexible polyhedra, Proc. Steklov Inst. Math., Volume 302 (2018) no. 1, pp. 130-145 | DOI | MR | Zbl
[15] On the existence of paradoxical motions of generically rigid graphs on the sphere (2019) (https://arxiv.org/abs/1908.00467, accepted for publication in SIAM Journal on Discrete Mathematics) | Zbl
[16] Open problems in geometry of curves and surfaces (2020) (http://people.math.gatech.edu/~ghomi/Papers/op.pdf) | Zbl
[17] Almost all simply connected closed surfaces are rigid, Geometric topology (Proc. Conf., Park City, Utah, 1974) (Lecture Notes in Mathematics), Volume 438 (1974), pp. 225-239 | DOI | Zbl
[18] Classification of flexible Kokotsakis polyhedra with quadrangular base, Int. Math. Res. Not., Volume 2017 (2017) no. 3, pp. 715-808 | DOI | MR | Zbl
[19] Über bewegliche Polyeder, Math. Ann., Volume 107 (1933) no. 1, pp. 627-647 | DOI | Zbl
[20] Octaèdres articulés de Bricard, Enseign. Math., Volume 13 (1967), pp. 175-185 | MR | Zbl
[21] Some necessary metric conditions for the flexibility of suspensions, Vestn. Mosk. Univ., Volume 77 (2001) no. 3, pp. 15-21 | MR | Zbl
[22] Isometric realizations of Bricard octahedra of the first and second types with known volumes, Fundam. Prikl. Mat., Volume 8 (2002) no. 3, pp. 755-768 | MR | Zbl
[23] Flexible octahedra in the projective extension of the Euclidean 3-space, J. Geom. Graph., Volume 14 (2010) no. 2, pp. 147-169 | MR | Zbl
[24] Kinematically redundant octahedral motion platform for virtual reality simulations, New Advances in Mechanism and Machine Science, Volume 22, Springer, 2018, pp. 387-400 | DOI
[25] Extending Bricard Octahedra (2010) (https://arxiv.org/abs/1011.5193)
[26] Generalizations of Bricard Octahedra (2012) (https://arxiv.org/abs/1206.2588)
[27] Symmetry as a sufficient condition for a finite flex, SIAM J. Discrete Math., Volume 24 (2010) no. 4, pp. 1291-1312 | DOI | MR | Zbl
[28] Zur Einzigkeit der Bricardschen Oktaeder, J. Geom., Volume 28 (1987) no. 1, pp. 41-56 | DOI | MR | Zbl
[29] A kinematic approach to Kokotsakis meshes, Comput. Aided Geom. Des., Volume 27 (2010) no. 6, pp. 428-437 | DOI | MR | Zbl
[30] Flexible polyhedral surfaces with two flat poses, Symmetry, Volume 7 (2015) no. 2, pp. 774-787 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy