Nous caractérisons les polynômes binaires unitairement parfaits, connus jusqu’ici, apparemment de façon « empirique » . La méthode que nous avons trouvée a permis et permettrait d’en découvrir d’autres.
We characterize all the known unitary perfect binary polynomials by precising their admissible families. Our method allows us to find other ones.
Révisé le :
Accepté le :
Publié le :
Olivier Rahavandrainy 1
@article{CRMATH_2021__359_2_123_0, author = {Olivier Rahavandrainy}, title = {Familles de polyn\^omes unitairement parfaits sur $\protect \mathbb{F}_2$}, journal = {Comptes Rendus. Math\'ematique}, pages = {123--130}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.149}, language = {fr}, }
Olivier Rahavandrainy. Familles de polynômes unitairement parfaits sur $\protect \mathbb{F}_2$. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 123-130. doi : 10.5802/crmath.149. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.149/
[1] Unitary perfect polynomials over , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., Volume 62 (1977) no. 5, pp. 417-422 | MR | Zbl
[2] Infinitely many perfect and unitary perfect polynomials, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., Volume 63 (1977) no. 5, pp. 294-303 | MR | Zbl
[3] The sum of the divisors of a polynomial, Duke Math. J., Volume 8 (1941), pp. 721-737 | DOI | MR | Zbl
[4] Odd perfect polynomials over , J. Théor. Nombres Bordeaux, Volume 19 (2007) no. 1, pp. 165-174 | DOI | Numdam | MR | Zbl
[5] Even perfect polynomials over with four prime factors, Int. J. Pure Appl. Math., Volume 52 (2009) no. 2, pp. 301-314 | MR
[6] There is no odd perfect polynomial over with four prime factors, Port. Math. (N.S.), Volume 66 (2009) no. 2, pp. 131-145 | DOI | MR | Zbl
[7] On even (unitary) perfect polynomials over , Finite Fields Appl., Volume 18 (2012) no. 5, pp. 920-932 | DOI | MR | Zbl
[8] Characterization of Sporadic perfect polynomials over , Funct. Approximatio, Comment. Math., Volume 55 (2016) no. 1, pp. 7-21 | DOI | MR | Zbl
[9] On Mersenne polynomials over , Finite Fields Appl., Volume 59 (2019), pp. 284-296 | DOI | MR | Zbl
[10] On odd prime divisors of binary perfect polynomials (2020) (https://arxiv.org/abs/2007.16016)
Cité par Sources :
Commentaires - Politique