Comptes Rendus
Algèbre
Familles de polynômes unitairement parfaits sur 𝔽 2
Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 123-130.

Nous caractérisons les polynômes binaires unitairement parfaits, connus jusqu’ici, apparemment de façon « empirique » . La méthode que nous avons trouvée a permis et permettrait d’en découvrir d’autres.

We characterize all the known unitary perfect binary polynomials by precising their admissible families. Our method allows us to find other ones.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.149

Olivier Rahavandrainy 1

1 Univ Brest, UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_2_123_0,
     author = {Olivier Rahavandrainy},
     title = {Familles de polyn\^omes unitairement parfaits sur $\protect \mathbb{F}_2$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {123--130},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {2},
     year = {2021},
     doi = {10.5802/crmath.149},
     language = {fr},
}
TY  - JOUR
AU  - Olivier Rahavandrainy
TI  - Familles de polynômes unitairement parfaits sur $\protect \mathbb{F}_2$
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 123
EP  - 130
VL  - 359
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.149
LA  - fr
ID  - CRMATH_2021__359_2_123_0
ER  - 
%0 Journal Article
%A Olivier Rahavandrainy
%T Familles de polynômes unitairement parfaits sur $\protect \mathbb{F}_2$
%J Comptes Rendus. Mathématique
%D 2021
%P 123-130
%V 359
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmath.149
%G fr
%F CRMATH_2021__359_2_123_0
Olivier Rahavandrainy. Familles de polynômes unitairement parfaits sur $\protect \mathbb{F}_2$. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 123-130. doi : 10.5802/crmath.149. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.149/

[1] Jacob T. B. jun Beard Unitary perfect polynomials over GF(q), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., Volume 62 (1977) no. 5, pp. 417-422 | MR | Zbl

[2] Jacob T. B. jun Beard; Alice T. Bullock; Mickie Sue Harbin Infinitely many perfect and unitary perfect polynomials, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., Volume 63 (1977) no. 5, pp. 294-303 | MR | Zbl

[3] Ernest Franklin Canaday The sum of the divisors of a polynomial, Duke Math. J., Volume 8 (1941), pp. 721-737 | DOI | MR | Zbl

[4] Luis H. Gallardo; Olivier Rahavandrainy Odd perfect polynomials over 𝔽 2 , J. Théor. Nombres Bordeaux, Volume 19 (2007) no. 1, pp. 165-174 | DOI | Numdam | MR | Zbl

[5] Luis H. Gallardo; Olivier Rahavandrainy Even perfect polynomials over 𝔽 2 with four prime factors, Int. J. Pure Appl. Math., Volume 52 (2009) no. 2, pp. 301-314 | MR

[6] Luis H. Gallardo; Olivier Rahavandrainy There is no odd perfect polynomial over 𝔽 2 with four prime factors, Port. Math. (N.S.), Volume 66 (2009) no. 2, pp. 131-145 | DOI | MR | Zbl

[7] Luis H. Gallardo; Olivier Rahavandrainy On even (unitary) perfect polynomials over 𝔽 2 , Finite Fields Appl., Volume 18 (2012) no. 5, pp. 920-932 | DOI | MR | Zbl

[8] Luis H. Gallardo; Olivier Rahavandrainy Characterization of Sporadic perfect polynomials over 𝔽 2 , Funct. Approximatio, Comment. Math., Volume 55 (2016) no. 1, pp. 7-21 | DOI | MR | Zbl

[9] Luis H. Gallardo; Olivier Rahavandrainy On Mersenne polynomials over 𝔽 2 , Finite Fields Appl., Volume 59 (2019), pp. 284-296 | DOI | MR | Zbl

[10] Luis H. Gallardo; Olivier Rahavandrainy On odd prime divisors of binary perfect polynomials (2020) (https://arxiv.org/abs/2007.16016)

Cité par Sources :

Commentaires - Politique