logo CRAS
Comptes Rendus. Mathématique
Algebra
Familles de polynômes unitairement parfaits sur 𝔽 2
[Some families of unitary perfect polynomials over 𝔽 2 ]
Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 123-130.

We characterize all the known unitary perfect binary polynomials by precising their admissible families. Our method allows us to find other ones.

Nous caractérisons les polynômes binaires unitairement parfaits, connus jusqu’ici, apparemment de façon « empirique » . La méthode que nous avons trouvée a permis et permettrait d’en découvrir d’autres.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.149
Olivier Rahavandrainy 1

1 Univ Brest, UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2021__359_2_123_0,
     author = {Olivier Rahavandrainy},
     title = {Familles de polyn\^omes unitairement parfaits sur $\protect \mathbb{F}_2$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {123--130},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {2},
     year = {2021},
     doi = {10.5802/crmath.149},
     language = {fr},
}
TY  - JOUR
TI  - Familles de polynômes unitairement parfaits sur $\protect \mathbb{F}_2$
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 123
EP  - 130
VL  - 359
IS  - 2
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.149
DO  - 10.5802/crmath.149
LA  - fr
ID  - CRMATH_2021__359_2_123_0
ER  - 
%0 Journal Article
%T Familles de polynômes unitairement parfaits sur $\protect \mathbb{F}_2$
%J Comptes Rendus. Mathématique
%D 2021
%P 123-130
%V 359
%N 2
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.149
%R 10.5802/crmath.149
%G fr
%F CRMATH_2021__359_2_123_0
Olivier Rahavandrainy. Familles de polynômes unitairement parfaits sur $\protect \mathbb{F}_2$. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 123-130. doi : 10.5802/crmath.149. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.149/

[1] Jacob T. B. jun Beard Unitary perfect polynomials over GF(q), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., Volume 62 (1977) no. 5, pp. 417-422 | MR | Zbl

[2] Jacob T. B. jun Beard; Alice T. Bullock; Mickie Sue Harbin Infinitely many perfect and unitary perfect polynomials, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., Volume 63 (1977) no. 5, pp. 294-303 | MR | Zbl

[3] Ernest Franklin Canaday The sum of the divisors of a polynomial, Duke Math. J., Volume 8 (1941), pp. 721-737 | DOI | MR | Zbl

[4] Luis H. Gallardo; Olivier Rahavandrainy Odd perfect polynomials over 𝔽 2 , J. Théor. Nombres Bordeaux, Volume 19 (2007) no. 1, pp. 165-174 | DOI | Numdam | MR | Zbl

[5] Luis H. Gallardo; Olivier Rahavandrainy Even perfect polynomials over 𝔽 2 with four prime factors, Int. J. Pure Appl. Math., Volume 52 (2009) no. 2, pp. 301-314 | MR

[6] Luis H. Gallardo; Olivier Rahavandrainy There is no odd perfect polynomial over 𝔽 2 with four prime factors, Port. Math. (N.S.), Volume 66 (2009) no. 2, pp. 131-145 | DOI | MR | Zbl

[7] Luis H. Gallardo; Olivier Rahavandrainy On even (unitary) perfect polynomials over 𝔽 2 , Finite Fields Appl., Volume 18 (2012) no. 5, pp. 920-932 | DOI | MR | Zbl

[8] Luis H. Gallardo; Olivier Rahavandrainy Characterization of Sporadic perfect polynomials over 𝔽 2 , Funct. Approximatio, Comment. Math., Volume 55 (2016) no. 1, pp. 7-21 | DOI | MR | Zbl

[9] Luis H. Gallardo; Olivier Rahavandrainy On Mersenne polynomials over 𝔽 2 , Finite Fields Appl., Volume 59 (2019), pp. 284-296 | DOI | MR | Zbl

[10] Luis H. Gallardo; Olivier Rahavandrainy On odd prime divisors of binary perfect polynomials (2020) (https://arxiv.org/abs/2007.16016)

Cited by Sources: