[Estimées de rigidité pour les champs incompatibles comme conséquence du résultat div-rot de Bourgain et Brezis]
Dans cette note, nous démontrons qu’une estimée de rigidité et une inégalité de Korn pour des champs avec des valeurs matricielles dont l’incompatibilité est une mesure bornée peuvent être obtenues comme conséquence d’une décomposition de Hodge avec intégrabilité critique dû à Bourgain et Brezis.
In this note we show that a sharp rigidity estimate and a sharp Korn’s inequality for matrix-valued fields whose incompatibility is a bounded measure can be obtained as a consequence of a Hodge decomposition with critical integrability due to Bourgain and Brezis.
Révisé le :
Accepté le :
Publié le :
Keywords: rigidity estimates, div-curl systems, Korn inequality, plasticity, incompatible fields, Hodge decomposition
Mot clés : estimée de rigidité, systèmes div-rot, inégalité de Korn, plasticité, champs incompatibles, décomposition de Hodge
Sergio Conti 1 ; Adriana Garroni 2
@article{CRMATH_2021__359_2_155_0, author = {Sergio Conti and Adriana Garroni}, title = {Sharp rigidity estimates for incompatible fields as a consequence of the {Bourgain} {Brezis} div-curl result}, journal = {Comptes Rendus. Math\'ematique}, pages = {155--160}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.161}, language = {en}, }
TY - JOUR AU - Sergio Conti AU - Adriana Garroni TI - Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result JO - Comptes Rendus. Mathématique PY - 2021 SP - 155 EP - 160 VL - 359 IS - 2 PB - Académie des sciences, Paris DO - 10.5802/crmath.161 LA - en ID - CRMATH_2021__359_2_155_0 ER -
%0 Journal Article %A Sergio Conti %A Adriana Garroni %T Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result %J Comptes Rendus. Mathématique %D 2021 %P 155-160 %V 359 %N 2 %I Académie des sciences, Paris %R 10.5802/crmath.161 %G en %F CRMATH_2021__359_2_155_0
Sergio Conti; Adriana Garroni. Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 155-160. doi : 10.5802/crmath.161. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.161/
[1] New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Math. Acad. Sci. Paris, Volume 338 (2004) no. 7, pp. 539-543 | DOI | MR | Zbl
[2] New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., Volume 9 (2007) no. 2, pp. 277-315 | DOI | MR | Zbl
[3] Boundary estimates for elliptic systems with data, Calc. Var. Partial Differ. Equ., Volume 30 (2007) no. 3, pp. 369-388 | DOI | MR | Zbl
[4] Piecewise rigidity, J. Funct. Anal., Volume 244 (2007) no. 1, pp. 134-153 | DOI | MR | Zbl
[5] Korn’s second inequality and geometric rigidity with mixed growth conditions, Calc. Var. Partial Differ. Equ., Volume 50 (2014) no. 1-2, pp. 437-454 | DOI | MR | Zbl
[6] The line-tension approximation as the dilute limit of linear-elastic dislocations, Arch. Ration. Mech. Anal., Volume 218 (2015) no. 2, pp. 699-755 | DOI | MR | Zbl
[7] Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992 | Zbl
[8] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Commun. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461-1506 | DOI | MR | Zbl
[9] Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 2, pp. 173-178 | DOI | MR | Zbl
[10] Gradient theory for plasticity via homogenization of discrete dislocations, J. Eur. Math. Soc., Volume 12 (2010) no. 5, pp. 1231-1266 | DOI | MR | Zbl
[11] On Korn–Maxwell–Sobolev Inequalities (2020) (https://arxiv.org/abs/2010.03353)
[12] Weighted Sobolev Spaces, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 31, BSB B. G. Teubner Verlagsgesellschaft, 1980 | MR | Zbl
[13] A note on div curl inequalities, Math. Res. Lett., Volume 12 (2005) no. 1, pp. 57-61 | DOI | MR | Zbl
[14] Geometric rigidity estimates for incompatible fields in dimension (2017) (https://arxiv.org/abs/1703.03288)
[15] Nečas-Lions lemma reloaded: An -version of the generalized Korn inequality for incompatible tensor fields (2019) (https://arxiv.org/abs/1912.08447)
[16] Geometric rigidity for incompatible fields and an application to strain-gradient plasticity, Indiana Univ. Math. J., Volume 63 (2014) no. 5, pp. 1365-1396 | MR | Zbl
[17] Singular Integrals and differentiability properties of functions, Princeton University Press, 1970 | Zbl
[18] Estimates for -vector fields, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 3, pp. 181-186 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique