logo CRAS
Comptes Rendus. Mathématique
Analysis
Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result
Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 155-160.

In this note we show that a sharp rigidity estimate and a sharp Korn’s inequality for matrix-valued fields whose incompatibility is a bounded measure can be obtained as a consequence of a Hodge decomposition with critical integrability due to Bourgain and Brezis.

Dans cette note, nous démontrons qu’une estimée de rigidité et une inégalité de Korn pour des champs avec des valeurs matricielles dont l’incompatibilité est une mesure bornée peuvent être obtenues comme conséquence d’une décomposition de Hodge avec intégrabilité critique dû à Bourgain et Brezis.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.161
Classification: 49Q20,  74C15,  53C24
Keywords: rigidity estimates, div-curl systems, Korn inequality, plasticity, incompatible fields, Hodge decomposition
Sergio Conti 1; Adriana Garroni 2

1 Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
2 University of Rome, Sapienza, P.le A. Moro 2, 00185 Rome, Italy
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2021__359_2_155_0,
     author = {Sergio Conti and Adriana Garroni},
     title = {Sharp rigidity estimates for incompatible fields as a consequence of the {Bourgain} {Brezis} div-curl result},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {155--160},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {2},
     year = {2021},
     doi = {10.5802/crmath.161},
     language = {en},
}
TY  - JOUR
TI  - Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 155
EP  - 160
VL  - 359
IS  - 2
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.161
DO  - 10.5802/crmath.161
LA  - en
ID  - CRMATH_2021__359_2_155_0
ER  - 
%0 Journal Article
%T Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result
%J Comptes Rendus. Mathématique
%D 2021
%P 155-160
%V 359
%N 2
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.161
%R 10.5802/crmath.161
%G en
%F CRMATH_2021__359_2_155_0
Sergio Conti; Adriana Garroni. Sharp rigidity estimates for incompatible fields as a consequence of the Bourgain Brezis div-curl result. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 155-160. doi : 10.5802/crmath.161. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.161/

[1] Jean Bourgain; Haïm Brezis New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Math. Acad. Sci. Paris, Volume 338 (2004) no. 7, pp. 539-543 | DOI | MR | Zbl

[2] Jean Bourgain; Haïm Brezis New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., Volume 9 (2007) no. 2, pp. 277-315 | DOI | MR | Zbl

[3] Haïm Brezis; Jean Van Schaftingen Boundary estimates for elliptic systems with L 1 data, Calc. Var. Partial Differ. Equ., Volume 30 (2007) no. 3, pp. 369-388 | DOI | MR | Zbl

[4] Antonin Chambolle; Alessandro Giacomini; Marcello Ponsiglione Piecewise rigidity, J. Funct. Anal., Volume 244 (2007) no. 1, pp. 134-153 | DOI | MR | Zbl

[5] Sergio Conti; Georg Dolzmann; Stefan Müller Korn’s second inequality and geometric rigidity with mixed growth conditions, Calc. Var. Partial Differ. Equ., Volume 50 (2014) no. 1-2, pp. 437-454 | DOI | MR | Zbl

[6] Sergio Conti; Adriana Garroni; Michael Ortiz The line-tension approximation as the dilute limit of linear-elastic dislocations, Arch. Ration. Mech. Anal., Volume 218 (2015) no. 2, pp. 699-755 | DOI | MR | Zbl

[7] Lawrence C. Evans; Ronald F. Gariepy Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992 | Zbl

[8] Gero Friesecke; Richard D. James; Stefan Müller A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Commun. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461-1506 | DOI | MR | Zbl

[9] Gero Friesecke; Stefan Müller; Richard D. James Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 2, pp. 173-178 | DOI | MR | Zbl

[10] Adriana Garroni; Giovanni Leoni; Marcello Ponsiglione Gradient theory for plasticity via homogenization of discrete dislocations, J. Eur. Math. Soc., Volume 12 (2010) no. 5, pp. 1231-1266 | DOI | MR | Zbl

[11] Franz Gmeineder; Daniel Spector On Korn–Maxwell–Sobolev Inequalities (2020) (https://arxiv.org/abs/2010.03353)

[12] Alois Kufner Weighted Sobolev Spaces, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 31, BSB B. G. Teubner Verlagsgesellschaft, 1980 | MR | Zbl

[13] Loredana Lanzani; Eli Stein A note on div curl inequalities, Math. Res. Lett., Volume 12 (2005) no. 1, pp. 57-61 | DOI | MR | Zbl

[14] Gianluca Lauteri; Stephan Luckhaus Geometric rigidity estimates for incompatible fields in dimension 3 (2017) (https://arxiv.org/abs/1703.03288)

[15] Peter Lewintan; Patrizio Neff Nečas-Lions lemma reloaded: An L p -version of the generalized Korn inequality for incompatible tensor fields (2019) (https://arxiv.org/abs/1912.08447)

[16] Stefan Müller; Lucia Scardia; Caterina Ida Zeppieri Geometric rigidity for incompatible fields and an application to strain-gradient plasticity, Indiana Univ. Math. J., Volume 63 (2014) no. 5, pp. 1365-1396 | MR | Zbl

[17] E. M. Stein Singular Integrals and differentiability properties of functions, Princeton University Press, 1970 | Zbl

[18] Jean Van Schaftingen Estimates for L 1 -vector fields, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 3, pp. 181-186 | DOI | MR | Zbl

Cited by Sources: