In this article, using a twisted version of Hörmander’s
Accepté le :
Accepté après révision le :
Publié le :
Mots-clés :
Takahiro Inayama 1

@article{CRMATH_2021__359_2_169_0, author = {Takahiro Inayama}, title = {From {H\"ormander{\textquoteright}s} $L^2$-estimates to partial positivity}, journal = {Comptes Rendus. Math\'ematique}, pages = {169--179}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.168}, language = {en}, }
Takahiro Inayama. From Hörmander’s $L^2$-estimates to partial positivity. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 169-179. doi : 10.5802/crmath.168. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.168/
[1] Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 193-259 | DOI | Numdam | Zbl
[2] Prekopa’s theorem and Kiselman’s minimum principle for plurisubharmonic functions, Math. Ann., Volume 312 (1998) no. 4, pp. 785-792 | DOI | MR | Zbl
[3] On Berndtsson’s generalization of Prékopa’s theorem, Math. Z., Volume 249 (2005) no. 2, pp. 401-410 | DOI | MR | Zbl
[4] Complex analytic and differential geometry (http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)
[5] Estimations
[6] Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press; Higher Education Press, 2012 | MR | Zbl
[7] Characterizations of plurisubharmonic functions (2019) (https://arxiv.org/abs/1910.06518)
[8] Positivity of holomorphic vector bundles in terms of
[9] Positivity of direct images of positively curved volume forms, Math. Z., Volume 278 (2014) no. 1-2, pp. 347-362 | DOI | MR | Zbl
[10]
[11] A converse of Hörmander’s
[12] Nakano positivity of singular Hermitian metrics and vanishing theorems of Demailly-Nadel-Nakano type (2020) (https://arxiv.org/abs/2004.05798)
[13] On logarithmic concave measures and functions, Acta Sci. Math., Volume 34 (1973), pp. 335-343 | MR | Zbl
[14] RC-positivity, rational connectedness and Yau’s conjecture, Camb. J. Math., Volume 6 (2018) no. 2, pp. 183-212 | DOI | MR | Zbl
[15] A partial converse to the Andreotti–Grauert theorem, Compos. Math., Volume 155 (2019) no. 1, pp. 89-99 | DOI | MR | Zbl
- Bogomolov-Sommese type vanishing theorem for holomorphic vector bundles equipped with positive singular Hermitian metrics, Mathematische Zeitschrift, Volume 303 (2023) no. 4, p. 23 (Id/No 92) | DOI:10.1007/s00209-023-03252-3 | Zbl:1536.32008
- Positivity of Riemannian metric and the existence theorem of
estimates for operator, The Journal of Geometric Analysis, Volume 33 (2023) no. 8, p. 26 (Id/No 266) | DOI:10.1007/s12220-023-01332-8 | Zbl:1522.32072 - A remark on characterizations of Griffiths positivity through asymptotic conditions, International Journal of Mathematics, Volume 32 (2021) no. 11, p. 16 (Id/No 2150087) | DOI:10.1142/s0129167x21500877 | Zbl:1478.32064
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier