Nous prouvons l’élimination des quantificateurs pour la théorie des corps quasi-réels clos munis d’une valuation compatible. Cela reprend et unifie les mêmes résultats connus pour les corps algébriquement clos et les corps réels clos.
We prove quantifier elimination for the theory of quasi-real closed fields with a compatible valuation. This unifies the same known results for algebraically closed valued fields and real closed valued fields.
Accepté le :
Publié le :
Mickaël Matusinski 1 ; Simon Müller 2
@article{CRMATH_2021__359_3_291_0, author = {Micka\"el Matusinski and Simon M\"uller}, title = {Quantifier elimination for quasi-real closed fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {291--295}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {3}, year = {2021}, doi = {10.5802/crmath.169}, language = {en}, }
Mickaël Matusinski; Simon Müller. Quantifier elimination for quasi-real closed fields. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 291-295. doi : 10.5802/crmath.169. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.169/
[1] Algebraische Konstruktion reeller Körper, Abh. Math. Semin. Univ. Hamb., Volume 5 (1927) no. 1, pp. 85-99 | DOI | Zbl
[2] Über nicht-archimedisch geordnete Körper. (Beiträge zur Algebra 5.)., Volume 8, 1927, pp. 3-13 | Zbl
[3] Real closed rings II, Ann. Pure Appl. Logic, Volume 25 (1983) no. 3, pp. 213-231 | DOI | MR | Zbl
[4] Mathematical logic and model theory. A brief introduction, Universitext, Springer, 2011, x+193 pages | Zbl
[5] Valuations, orderings, and Milnor -theory, Mathematical Surveys and Monographs, 124, American Mathematical Society, 2006, xiv+288 pages | DOI | MR | Zbl
[6] Valued fields, Springer Monographs in Mathematics, Springer, 2005, x+205 pages | Zbl
[7] Quasi-ordered fields, J. Pure Appl. Algebra, Volume 45 (1987) no. 3, pp. 207-210 | DOI | MR | Zbl
[8] Allgemeine Bewertungstheorie, J. Reine Angew. Math., Volume 167 (1932), pp. 160-196 | DOI | MR | Zbl
[9] The Valuation Difference Rank of a Quasi-Ordered Difference Field, Groups, Modules, and Model Theory – Surveys and Recent Developments : In Memory of Rüdiger Göbel (Manfred Droste; László Fuchs; Brendan Goldsmith; Lutz Strüngmann, eds.), Springer, 2017, pp. 399-414 | DOI | Zbl
[10] Compatibility of Quasi-Orderings and Valuations: A Baer–Krull Theorem for Quasi-Ordered Rings, Order, Volume 36 (2019) no. 2, pp. 249-269 | DOI | MR | Zbl
[11] Complete theories, Studies in Logic and the Foundations of Mathematics, North-Holland, 1956 | Zbl
[12] Improving the fundamental theorem of algebra, Math. Intell., Volume 29 (2007) no. 4, pp. 9-14 | DOI | MR | Zbl
[13] Commutative algebra. Vol. II, Graduate Texts in Mathematics, 29, Springer, 1975, x+414 pages (Reprint of the 1960 edition) | MR | Zbl
Cité par Sources :
Commentaires - Politique