Let be an associative algebra. A finite word over alphabet is -reducible if its image in is a -linear combination of length-lexicographically lesser words. An obstruction is a subword-minimal -reducible word. If the number of obstructions is finite then has a finite Gröbner basis, and the word problem for the algebra is decidable. A cogrowth function is the number of obstructions of length . We show that the cogrowth function of a finitely presented algebra is either bounded or at least logarithmical. We also show that an uniformly recurrent word has at least logarithmical cogrowth.
Soit une algèbre associative. Un mot fini sur l’alphabet est -réductible si son image dans est une combinaison linéaire de mots de longueur lexicographiquement moindre. Une obstruction dans un mot minimal -réductible. Si le nombre d’obstructions est fini, alors a une base finie Gröbner, et le mot problème pour l’algèbre est décidable. Une fonction co-croissance est le nombre d’obstructions de longueur . Nous montrons que la fonction de co-croissance d’une algèbre finement présentée est soit bornée, soit au moins logarithmique. Nous montrons également qu’un mot uniformément récurrent a au moins une co-croissance logarithmique.
Revised:
Accepted:
Published online:
Alexei Ya. Kanel-Belov 1; Igor Melnikov 2; Ivan Mitrofanov 3
@article{CRMATH_2021__359_3_297_0, author = {Alexei Ya. Kanel-Belov and Igor Melnikov and Ivan Mitrofanov}, title = {On cogrowth function of algebras and its logarithmical gap}, journal = {Comptes Rendus. Math\'ematique}, pages = {297--303}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {3}, year = {2021}, doi = {10.5802/crmath.170}, language = {en}, }
TY - JOUR AU - Alexei Ya. Kanel-Belov AU - Igor Melnikov AU - Ivan Mitrofanov TI - On cogrowth function of algebras and its logarithmical gap JO - Comptes Rendus. Mathématique PY - 2021 SP - 297 EP - 303 VL - 359 IS - 3 PB - Académie des sciences, Paris DO - 10.5802/crmath.170 LA - en ID - CRMATH_2021__359_3_297_0 ER -
Alexei Ya. Kanel-Belov; Igor Melnikov; Ivan Mitrofanov. On cogrowth function of algebras and its logarithmical gap. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 297-303. doi : 10.5802/crmath.170. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.170/
[1] Forbidden Words in Symbolic Dynamics, Adv. Appl. Math., Volume 25 (2020) no. 2, pp. 163-193 | DOI | MR | Zbl
[2] Monomial algebras, J. Math. Sci., New York, Volume 87 (1997) no. 3, pp. 3463-3575 | DOI | MR | Zbl
[3] The diamond lemma for ring theory, Adv. Math., Volume 29 (1978) no. 2, pp. 178-218 | DOI | MR | Zbl
[4] The maximal length of the period of a periodic word defined by restrictions (2013) (https://arxiv.org/abs/1305.0460) | Zbl
[5] On the number of restrictions defining a periodic sequence, Model and Analysis of Inform. Systems, Volume 14 (2007) no. 2, pp. 12-16 (in Russian)
[6] Finite Gröbner basis algebras with unsolvable nilpotency problem and zero divisors problem, J. Algebra, Volume 508 (2018), pp. 575-588 | DOI | Zbl
[7] Number of restrictions required for periodic word in the finite alphabet (2012) (https://arxiv.org/abs/1209.0220)
[8] Minimal number of restrictions defining a periodic word (2014) (https://arxiv.org/abs/1412.5201)
[9] Sequences close to periodic, Russ. Math. Surv., Volume 64 (2009) no. 5, pp. 805-871 | DOI | Zbl
Cited by Sources:
Comments - Policy