We study the existence of ground states of a Schrödinger–Poisson–Slater type equation with pure power nonlinearity. By carrying out the constrained minimization on a special manifold, which is a combination of the Pohozaev manifold and Nehari manifold, we obtain the existence of ground state solutions of this system.
Révisé le :
Accepté le :
Publié le :
Keywords: Schrödinger–Poisson–Slater type equation, ground state, Coulomb–Sobolev inequality
Chunyu Lei 1 ; Yutian Lei 2

@article{CRMATH_2021__359_2_219_0, author = {Chunyu Lei and Yutian Lei}, title = {On the existence of ground states of an equation of {Schr\"odinger{\textendash}Poisson{\textendash}Slater} type}, journal = {Comptes Rendus. Math\'ematique}, pages = {219--227}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.175}, language = {en}, }
TY - JOUR AU - Chunyu Lei AU - Yutian Lei TI - On the existence of ground states of an equation of Schrödinger–Poisson–Slater type JO - Comptes Rendus. Mathématique PY - 2021 SP - 219 EP - 227 VL - 359 IS - 2 PB - Académie des sciences, Paris DO - 10.5802/crmath.175 LA - en ID - CRMATH_2021__359_2_219_0 ER -
Chunyu Lei; Yutian Lei. On the existence of ground states of an equation of Schrödinger–Poisson–Slater type. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 219-227. doi : 10.5802/crmath.175. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.175/
[1] Multiple bounded states for Schrödinger–Poisson problem, Commun. Contemp. Math., Volume 10 (2008) no. 3, pp. 391-404 | DOI | Zbl
[2] Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems, Math. Ann., Volume 360 (2014) no. 3-4, pp. 653-673 | DOI | MR | Zbl
[3] Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces, Trans. Am. Math. Soc., Volume 370 (2018) no. 11, pp. 8285-8310 | DOI | MR | Zbl
[4] On bound states concentrating on spheres for the Maxwell–Schrödinger equation, SIAM J. Math. Anal., Volume 37 (2005) no. 1, pp. 321-342 | DOI | Zbl
[5] On the radiality of constrained minimizers to the Schrödinger–Poisson–Slater energy, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 3, pp. 369-376 | DOI | Numdam | Zbl
[6] Ground and bound states for a static Schrödinger–Poisson–Slater problem, Commun. Contemp. Math., Volume 14 (2012) no. 1, 1250003, 22 pages | Zbl
[7] Qualitative analysis for the static Hartree-type equations, SIAM J. Math. Anal., Volume 45 (2013) no. 1, pp. 388-406 | MR | Zbl
[8] Existence and nonexistence of positive solutions for a static Schrödinger–Poisson–Slater equation, J. Differ. Equations, Volume 266 (2019) no. 9, pp. 5912-5941 | Zbl
[9] The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., Volume 237 (2006) no. 2, pp. 655-674 | DOI | MR | Zbl
[10] On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., Volume 198 (2010) no. 1, pp. 349-368 | DOI | MR | Zbl
[11] Cluster solutions for the Schrödinger–Poisson–Slater problem around a local minimun of potential, Rev. Mat. Iberoam., Volume 27 (2011) no. 1, pp. 253-271 | DOI | Zbl
[12] Ground state solutions of Nehari–Pohozaev type for Schrödinger–Poisson problems with general potentials, Discrete Contin. Dyn. Syst., Volume 37 (2017) no. 9, pp. 4973-5002 | DOI | Zbl
[13] Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, 1996 | MR | Zbl
- Ground states for Schrödinger-Poisson system with zero mass and the Coulomb critical exponent, Advances in Nonlinear Analysis, Volume 14 (2025) no. 1 | DOI:10.1515/anona-2025-0073
- Ground state solutions for a class of Schrödinger–Poisson–Slater equation with Coulomb–Sobolev critical exponent, Boundary Value Problems, Volume 2025 (2025) no. 1 | DOI:10.1186/s13661-025-01995-y
- Existence and Stability in Nonlocal Schrödinger–Poisson–Slater Equations, Fractal and Fractional, Volume 9 (2025) no. 6, p. 329 | DOI:10.3390/fractalfract9060329
- The existence of solutions for Schrödinger-Poisson equation with zero mass and a convolution nonlinearity, Journal of Mathematical Analysis and Applications, Volume 550 (2025) no. 2, p. 129632 | DOI:10.1016/j.jmaa.2025.129632
- Ground States of Schrödinger-Poisson-Slatter Equations with Linear Non-local Terms, New Trends in the Applications of Differential Equations in Sciences, Volume 488 (2025), p. 3 | DOI:10.1007/978-3-031-83398-4_1
- Multiple positive solutions for a class of concave-convex Schrödinger-Poisson-Slater equations with critical exponent, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2023-0129
- Existence and nonexistence of ground state solutions for a Schrödinger–Poisson–Slater equation, Complex Variables and Elliptic Equations, Volume 69 (2024) no. 4, p. 667 | DOI:10.1080/17476933.2022.2159949
- Ground state solution of Fractional Schrödinger-Poisson-Slater equation: Double critical case, Discrete and Continuous Dynamical Systems - S, Volume 0 (2024) no. 0, p. 0 | DOI:10.3934/dcdss.2024206
- Ground State Solutions of Nehari-Pohozaev Type for Schrödinger–Poisson–Slater Equation with Zero Mass and Critical Growth, The Journal of Geometric Analysis, Volume 34 (2024) no. 7 | DOI:10.1007/s12220-024-01656-z
- Groundstate for the Schrödinger-Poisson-Slater equation involving the Coulomb-Sobolev critical exponent, Advances in Nonlinear Analysis, Volume 12 (2023) no. 1 | DOI:10.1515/anona-2022-0299
- Existence and concentration behavior of positive solutions to Schrödinger-Poisson-Slater equations, Advances in Nonlinear Analysis, Volume 12 (2023) no. 1 | DOI:10.1515/anona-2022-0293
- Groundstates of the Schrödinger–Poisson–Slater equation with critical growth, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Volume 117 (2023) no. 3 | DOI:10.1007/s13398-023-01457-z
- Ground state solutions for a Schrödinger–Poisson–Slater‐type equation with critical growth, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 12, p. 7443 | DOI:10.1002/mma.8251
- Ground State Solution of Schrödinger–Poisson–Choquard Equation: Double Critical Case, Results in Mathematics, Volume 77 (2022) no. 4 | DOI:10.1007/s00025-022-01684-7
Cité par 14 documents. Sources : Crossref
Commentaires - Politique