Soit
Let
Révisé le :
Accepté le :
Publié le :
Nguyễn H. V. Hưng 1

@article{CRMATH_2021__359_3_229_0, author = {Nguyễn H. V. Hưng}, title = {The mod $p$ {Margolis} homology of the {Dickson{\textendash}M\`ui} algebra}, journal = {Comptes Rendus. Math\'ematique}, pages = {229--236}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {3}, year = {2021}, doi = {10.5802/crmath.151}, language = {en}, }
Nguyễn H. V. Hưng. The mod $p$ Margolis homology of the Dickson–Mùi algebra. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 229-236. doi : 10.5802/crmath.151. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.151/
[1] A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Am. Math. Soc., Volume 12 (1911), pp. 75-98 | DOI | MR | Zbl
[2] The Margolis homology of the Dickson algebra and Pengelley–Sinha’s Conjecture (submitted)
[3] The action of the Steenrod squares on the modular invariants of linear groups, Proc. Am. Math. Soc., Volume 113 (1991) no. 4, pp. 1097-1104 | DOI | MR | Zbl
[4] The mod 2 Margolis homology of the Dickson algebra, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 4, pp. 505-510 | MR | Zbl
[5] The action of the mod p Steenrod operations on the modular invariants of linear groups, Vietnam J. Math., Volume 23 (1995) no. 1, pp. 39-56 | MR | Zbl
[6] The Steenrod algebra and its dual, Ann. Math., Volume 67 (1958), pp. 150-171 | DOI | MR | Zbl
[7] Modular invariant theory and the cohomology algebras of symmetric group, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 22 (1975), pp. 319-369 | MR | Zbl
[8] Cohomology of symmetric groups (2019) (Lecture on the Vietnam-US Mathematical joint Metting, Quynhon June 10-13)
[9] On the Steenrod algebra of Morava K-theory, J. Lond. Math. Soc., Volume 22 (1980), pp. 423-438 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique