Comptes Rendus
Homological algebra
The mod p Margolis homology of the Dickson–Mùi algebra
Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 229-236.

Let E n =(/p) n be regarded as the translation group on itself. It is considered as a subgroup of the symmetric group 𝕊 p n on p n letters. We completely compute the mod p Margolis homology of the Dickson–Mùi algebra, i.e. the homology of the image of the restriction Res(𝕊 p n ,E n ):H * (𝕊 p n ;𝔽 p )H * (E n ;𝔽 p ) with the differential to be the Milnor operation Q j , for p an odd prime and for any n, j. The motivation for this problem is that, the Margolis homology of the Dickson–Mùi algebra plays a key role in study of the Morava K-theory K(j) * (B𝕊 m ) of the symmetric group 𝕊 m on m letters. The main tool of our work is the notion of “critical” elements. The mod p Margolis homology of the Dickson–Mùi algebra concentrates on even degrees. It is analogous to the mod 2 Margolis homology of the Dickson algebra.

Soit E n =(/p) n le groupe agissant sur lui même par les translations. On le considère comme sous-groupe du groupe symétrique 𝕊 p n en p n lettres. Dans cette note on calcule entièrement l’homologie de Margolis modulo p de l’algèbre de Dickson–Mùi, i.e. l’homologie de l’image de la restriction Res(𝕊 p n ,E n ):H * (𝕊 p n ;𝔽 p )H * (E n ;𝔽 p ) en choisissant pour différentielles les opérations de Milnor Q j , pour p un nombre premier impair et pour tout n, j. La motivation pour cette étude est le rôle clé joué par cette homologie dans l’étude de la K-théorie de Morava K(j) * (B𝕊 m ) du groupe symétrique 𝕊 m en m lettres. L’outil principal de notre travail est la notion d’éléments « critiques ». L’homologie de Margolis mod p de l’algèbre de Dickson–Mùi concentre en degrés pairs. Elle est analogue à l’homologie de Margolis mod 2 de l’algèbre de Dickson.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.151
Classification: 55S05, 55S10, 55N99

Nguyễn H. V. Hưng 1

1 Department of Mathematics, HUS, Vietnam National University, Hanoi, 334 Nguyễn Trãi Street, Hanoi, Vietnam
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2021__359_3_229_0,
     author = {Nguyễn H. V. Hưng},
     title = {The mod $p$ {Margolis} homology of the {Dickson{\textendash}M\`ui} algebra},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {229--236},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {3},
     year = {2021},
     doi = {10.5802/crmath.151},
     language = {en},
}
TY  - JOUR
AU  - Nguyễn H. V. Hưng
TI  - The mod $p$ Margolis homology of the Dickson–Mùi algebra
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 229
EP  - 236
VL  - 359
IS  - 3
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.151
LA  - en
ID  - CRMATH_2021__359_3_229_0
ER  - 
%0 Journal Article
%A Nguyễn H. V. Hưng
%T The mod $p$ Margolis homology of the Dickson–Mùi algebra
%J Comptes Rendus. Mathématique
%D 2021
%P 229-236
%V 359
%N 3
%I Académie des sciences, Paris
%R 10.5802/crmath.151
%G en
%F CRMATH_2021__359_3_229_0
Nguyễn H. V. Hưng. The mod $p$ Margolis homology of the Dickson–Mùi algebra. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 229-236. doi : 10.5802/crmath.151. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.151/

[1] Leonard E. Dickson A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Am. Math. Soc., Volume 12 (1911), pp. 75-98 | DOI | MR | Zbl

[2] N. H. V. Hưng The Margolis homology of the Dickson algebra and Pengelley–Sinha’s Conjecture (submitted)

[3] N. H. V. Hưng The action of the Steenrod squares on the modular invariants of linear groups, Proc. Am. Math. Soc., Volume 113 (1991) no. 4, pp. 1097-1104 | DOI | MR | Zbl

[4] N. H. V. Hưng The mod 2 Margolis homology of the Dickson algebra, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 4, pp. 505-510 | MR | Zbl

[5] N. H. V. Hưng; Phạm Anh Minh The action of the mod p Steenrod operations on the modular invariants of linear groups, Vietnam J. Math., Volume 23 (1995) no. 1, pp. 39-56 | MR | Zbl

[6] John W. Milnor The Steenrod algebra and its dual, Ann. Math., Volume 67 (1958), pp. 150-171 | DOI | MR | Zbl

[7] Huỳnh Mùi Modular invariant theory and the cohomology algebras of symmetric group, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 22 (1975), pp. 319-369 | MR | Zbl

[8] Dev P. Sinha Cohomology of symmetric groups (2019) (Lecture on the Vietnam-US Mathematical joint Metting, Quynhon June 10-13)

[9] Nobuaki Yagita On the Steenrod algebra of Morava K-theory, J. Lond. Math. Soc., Volume 22 (1980), pp. 423-438 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy