Let be regarded as the translation group on itself. It is considered as a subgroup of the symmetric group on letters. We completely compute the mod Margolis homology of the Dickson–Mùi algebra, i.e. the homology of the image of the restriction with the differential to be the Milnor operation , for an odd prime and for any , . The motivation for this problem is that, the Margolis homology of the Dickson–Mùi algebra plays a key role in study of the Morava K-theory of the symmetric group on letters. The main tool of our work is the notion of “critical” elements. The mod Margolis homology of the Dickson–Mùi algebra concentrates on even degrees. It is analogous to the mod Margolis homology of the Dickson algebra.
Soit le groupe agissant sur lui même par les translations. On le considère comme sous-groupe du groupe symétrique en lettres. Dans cette note on calcule entièrement l’homologie de Margolis modulo de l’algèbre de Dickson–Mùi, i.e. l’homologie de l’image de la restriction en choisissant pour différentielles les opérations de Milnor , pour un nombre premier impair et pour tout , . La motivation pour cette étude est le rôle clé joué par cette homologie dans l’étude de la K-théorie de Morava du groupe symétrique en lettres. L’outil principal de notre travail est la notion d’éléments « critiques ». L’homologie de Margolis mod de l’algèbre de Dickson–Mùi concentre en degrés pairs. Elle est analogue à l’homologie de Margolis mod de l’algèbre de Dickson.
Revised:
Accepted:
Published online:
Nguyễn H. V. Hưng 1
@article{CRMATH_2021__359_3_229_0, author = {Nguyễn H. V. Hưng}, title = {The mod $p$ {Margolis} homology of the {Dickson{\textendash}M\`ui} algebra}, journal = {Comptes Rendus. Math\'ematique}, pages = {229--236}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {3}, year = {2021}, doi = {10.5802/crmath.151}, language = {en}, }
Nguyễn H. V. Hưng. The mod $p$ Margolis homology of the Dickson–Mùi algebra. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 229-236. doi : 10.5802/crmath.151. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.151/
[1] A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Am. Math. Soc., Volume 12 (1911), pp. 75-98 | DOI | MR | Zbl
[2] The Margolis homology of the Dickson algebra and Pengelley–Sinha’s Conjecture (submitted)
[3] The action of the Steenrod squares on the modular invariants of linear groups, Proc. Am. Math. Soc., Volume 113 (1991) no. 4, pp. 1097-1104 | DOI | MR | Zbl
[4] The mod 2 Margolis homology of the Dickson algebra, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 4, pp. 505-510 | MR | Zbl
[5] The action of the mod p Steenrod operations on the modular invariants of linear groups, Vietnam J. Math., Volume 23 (1995) no. 1, pp. 39-56 | MR | Zbl
[6] The Steenrod algebra and its dual, Ann. Math., Volume 67 (1958), pp. 150-171 | DOI | MR | Zbl
[7] Modular invariant theory and the cohomology algebras of symmetric group, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 22 (1975), pp. 319-369 | MR | Zbl
[8] Cohomology of symmetric groups (2019) (Lecture on the Vietnam-US Mathematical joint Metting, Quynhon June 10-13)
[9] On the Steenrod algebra of Morava K-theory, J. Lond. Math. Soc., Volume 22 (1980), pp. 423-438 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy