Let be a set of nonnegative integers. Let be the set of all integers in the sumset that have at least representations as a sum of elements of . In this paper, we prove that, if , and is a finite set of integers such that and then there exist integers and sets , such that
for all This improves a recent result of Nathanson with the bound .
Révisé le :
Accepté le :
Publié le :
Jun-Yu Zhou 1 ; Quan-Hui Yang 2
@article{CRMATH_2021__359_4_493_0, author = {Jun-Yu Zhou and Quan-Hui Yang}, title = {On the structure of the $h$-fold sumsets}, journal = {Comptes Rendus. Math\'ematique}, pages = {493--500}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {4}, year = {2021}, doi = {10.5802/crmath.191}, language = {en}, }
Jun-Yu Zhou; Quan-Hui Yang. On the structure of the $h$-fold sumsets. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 493-500. doi : 10.5802/crmath.191. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.191/
[1] The Frobenius postage stamp problem, and beyond (2020) (https://arxiv.org/abs/2003.04076) | DOI | Zbl
[2] A tight structure theorem for sumsets (2020) (https://arxiv.org/abs/2006.01041)
[3] Sums of finite sets of integers, Am. Math. Mon., Volume 79 (1972), pp. 1010-1012 | DOI | MR | Zbl
[4] Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics, 165, Springer, 1996 | Zbl
[5] Sums of finite sets of integers, II (2020) (https://arxiv.org/abs/2005.10809v3) | Zbl
[6] On the structure of the sumsets, Discrete Math., Volume 311 (2011) no. 6, pp. 408-412 | MR | Zbl
Cité par Sources :
Commentaires - Politique