Comptes Rendus
Théorie des nombres
On the structure of the h-fold sumsets
Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 493-500.

Let A be a set of nonnegative integers. Let (hA)(t) be the set of all integers in the sumset hA that have at least t representations as a sum of h elements of A. In this paper, we prove that, if k2, and A=a0,a1,,ak is a finite set of integers such that 0=a0<a1<<ak and gcda1,a2,,ak=1, then there exist integers ct,dt and sets Ct[0,ct-2], Dt[0,dt-2] such that

(hA)(t)=Ctct,hak-dthak-1-Dt

for all hi=2k(tai-1)-1. This improves a recent result of Nathanson with the bound h(k-1)(tak-1)ak+1.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.191
Classification : 11B13

Jun-Yu Zhou 1 ; Quan-Hui Yang 2

1 School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
2 School of Mathematics and Statistics, Nanjing University of Information, Science and Technology, Nanjing 210044, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_4_493_0,
     author = {Jun-Yu Zhou and Quan-Hui Yang},
     title = {On the structure of the $h$-fold sumsets},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {493--500},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {4},
     year = {2021},
     doi = {10.5802/crmath.191},
     language = {en},
}
TY  - JOUR
AU  - Jun-Yu Zhou
AU  - Quan-Hui Yang
TI  - On the structure of the $h$-fold sumsets
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 493
EP  - 500
VL  - 359
IS  - 4
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.191
LA  - en
ID  - CRMATH_2021__359_4_493_0
ER  - 
%0 Journal Article
%A Jun-Yu Zhou
%A Quan-Hui Yang
%T On the structure of the $h$-fold sumsets
%J Comptes Rendus. Mathématique
%D 2021
%P 493-500
%V 359
%N 4
%I Académie des sciences, Paris
%R 10.5802/crmath.191
%G en
%F CRMATH_2021__359_4_493_0
Jun-Yu Zhou; Quan-Hui Yang. On the structure of the $h$-fold sumsets. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 493-500. doi : 10.5802/crmath.191. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.191/

[1] Andrew Granville; George Shakan The Frobenius postage stamp problem, and beyond (2020) (https://arxiv.org/abs/2003.04076) | DOI | Zbl

[2] Andrew Granville; Aled Walker A tight structure theorem for sumsets (2020) (https://arxiv.org/abs/2006.01041)

[3] Melvyn B. Nathanson Sums of finite sets of integers, Am. Math. Mon., Volume 79 (1972), pp. 1010-1012 | DOI | MR | Zbl

[4] Melvyn B. Nathanson Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics, 165, Springer, 1996 | Zbl

[5] Melvyn B. Nathanson Sums of finite sets of integers, II (2020) (https://arxiv.org/abs/2005.10809v3) | Zbl

[6] Jiandong Wu; Fengjuan Chen; Yonggao Chen On the structure of the sumsets, Discrete Math., Volume 311 (2011) no. 6, pp. 408-412 | MR | Zbl

Cité par Sources :

Commentaires - Politique