We prove that a “cushioned” Hermitian–Einstein-type equation proposed by Demailly in an approach towards a conjecture of Griffiths on the existence of a Griffiths positively curved metric on a Hartshorne ample vector bundle, has an essentially unique solution when the bundle is stable. This result indicates that the proposed approach must be modified in order to attack the aforementioned conjecture of Griffiths.
Accepté le :
Publié le :
DOI : 10.5802/crmath.192
Vamsi Pritham Pingali 1
@article{CRMATH_2021__359_4_501_0, author = {Vamsi Pritham Pingali}, title = {A note on {Demailly{\textquoteright}s} approach towards a conjecture of {Griffiths}}, journal = {Comptes Rendus. Math\'ematique}, pages = {501--503}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {4}, year = {2021}, doi = {10.5802/crmath.192}, zbl = {07362170}, language = {en}, }
Vamsi Pritham Pingali. A note on Demailly’s approach towards a conjecture of Griffiths. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 501-503. doi : 10.5802/crmath.192. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.192/
[1] Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., Volume 169 (2009) no. 2, pp. 531-560 | DOI | MR | Zbl
[2] A characterization of ample vector bundles on a curve, Math. Ann., Volume 287 (1990) no. 4, pp. 571-575 | DOI | MR | Zbl
[3] Hermitian–Yang–Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles (2020) (https://arxiv.org/abs/2002.02677) | Zbl
[4] A new proof of a theorem of Narasimhan and Seshadri, J. Differ. Geom., Volume 2 (1983), pp. 269-277 | MR | Zbl
[5] Hermitian differential geometry, Chern classes and positive vector bundles, Global analysis, Princeton University Press, 1969, pp. 185-251 | Zbl
[6] Positivity and vanishing theorems for ample vector bundles, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 303-331 | MR | Zbl
[7] A note on positivity of Einstein bundles, Indag. Math., Volume 2 (1991) no. 3, pp. 311-318 | DOI | MR | Zbl
[8] Hodge metrics and positivity of direct images, J. Reine Angew. Math., Volume 606 (2007), pp. 167-178 | MR | Zbl
[9] arXiv preprint (2017) (https://arxiv.org/abs/1710.10034)
[10] Representability of Chern–Weil forms, Math. Z., Volume 288 (2018) no. 1-2, pp. 629-641 | DOI | MR | Zbl
[11] A vector bundle version of the Monge–Ampère equation, Adv. Math., Volume 360 (2020), 106921, 40 pages | MR | Zbl
[12] Positive vector bundles on complex surfaces, Manuscr. Math., Volume 50 (1985) no. 1, pp. 133-144 | DOI | MR | Zbl
[13] Some results in the theory of vector bundles, Nagoya Math. J., Volume 52 (1973), pp. 97-128 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique