logo CRAS
Comptes Rendus. Mathématique
Algebra, Number theory
Formal deformations of the algebra of Jacobi forms and Rankin–Cohen brackets
Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 505-521.

This work is devoted to the algebraic and arithmetic properties of Rankin–Cohen brackets allowing to define and study them in several natural situations of number theory. It focuses on the property of these brackets to be formal deformations of the algebras on which they are defined, with related questions on restriction-extension methods. The general algebraic results developed here are applied to the study of formal deformations of the algebra of weak Jacobi forms and their relation with the Rankin–Cohen brackets on modular and quasimodular forms.

Ce travail est consacré aux propriétés algébriques et arithmétiques des crochets de Rankin–Cohen permettant de les définir et de les étudier dans plusieurs situations naturelles de la théorie des nombres. Il se concentre sur la propriété qu’ont ces crochets d’être des déformations formelles des algèbres sur lesquelles ils sont définis, avec des questions connexes sur les méthodes de restriction-extension. Les résultats algébriques généraux développés ici sont appliqués à l’étude des déformations formelles de l’algèbre des formes de Jacobi faibles et leur relation avec les crochets de Rankin–Cohen pour les formes modulaires et quasimodulaires.

Received:
Revised:
Accepted:
Published online:
DOI: https://doi.org/10.5802/crmath.193
Classification: 53D55,  17B63,  11F25,  11F11,  16W25
YoungJu Choie 1; François Dumas 2; François Martin 2; Emmanuel Royer 2

1. Pohang University of Science and Technology, Department of Mathematics, Pohang, Korea
2. Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France
@article{CRMATH_2021__359_4_505_0,
     author = {YoungJu Choie and Fran\c{c}ois Dumas and Fran\c{c}ois Martin and Emmanuel Royer},
     title = {Formal deformations of the algebra of {Jacobi} forms and {Rankin{\textendash}Cohen} brackets},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {505--521},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {4},
     year = {2021},
     doi = {10.5802/crmath.193},
     zbl = {07362171},
     language = {en},
}
TY  - JOUR
AU  - YoungJu Choie
AU  - François Dumas
AU  - François Martin
AU  - Emmanuel Royer
TI  - Formal deformations of the algebra of Jacobi forms and Rankin–Cohen brackets
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 505
EP  - 521
VL  - 359
IS  - 4
PB  - Académie des sciences, Paris
UR  - https://zbmath.org/?q=an%3A07362171
UR  - https://doi.org/10.5802/crmath.193
DO  - 10.5802/crmath.193
LA  - en
ID  - CRMATH_2021__359_4_505_0
ER  - 
%0 Journal Article
%A YoungJu Choie
%A François Dumas
%A François Martin
%A Emmanuel Royer
%T Formal deformations of the algebra of Jacobi forms and Rankin–Cohen brackets
%J Comptes Rendus. Mathématique
%D 2021
%P 505-521
%V 359
%N 4
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.193
%R 10.5802/crmath.193
%G en
%F CRMATH_2021__359_4_505_0
YoungJu Choie; François Dumas; François Martin; Emmanuel Royer. Formal deformations of the algebra of Jacobi forms and Rankin–Cohen brackets. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 505-521. doi : 10.5802/crmath.193. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.193/

[1] Pierre Bieliavsky; Xiang Tang; Yi-Jun Yao Rankin–Cohen brackets and formal quantization, Adv. Math., Volume 212 (2007) no. 1, pp. 293-314 | Article | MR 2319770 | Zbl 1123.53049

[2] YoungJu Choie; François Dumas; François Martin; Emmanuel Royer A derivation on Jacobi forms: Oberdieck derivation (Unpublished note. Available at https://hal.archives-ouvertes.fr/hal-03132764)

[3] YoungJu Choie; Wolfgang Eholzer Rankin–Cohen operators for Jacobi and Siegel forms, J. Number Theory, Volume 68 (1998) no. 2, pp. 160-177 | Article | MR 1605899 | Zbl 0958.11032

[4] YoungJu Choie; Wolfgang Eholzer Jacobi forms and generalized RC-algebras, Rocky Mt. J. Math., Volume 31 (2001) no. 4, pp. 1265-1275 | Article | MR 1895295 | Zbl 1033.11022

[5] Paula Beazley Cohen; Yuri Manin; Don Zagier Automorphic pseudodifferential operators, Algebraic aspects of integrable systems (Progress in Nonlinear Differential Equations and their Applications), Volume 26, Birkhäuser, 1997, pp. 17-47 | Article | MR 1418868 | Zbl 1055.11514

[6] Alain Connes; Henri Moscovici Rankin–Cohen brackets and the Hopf algebra of transverse geometry, Mosc. Math. J., Volume 4 (2004) no. 1, pp. 111-130 | Article | MR 2074985 | Zbl 1122.11024

[7] Gerrit van Dijk; Michael Pevzner Ring structures for holomorphic discrete series and Rankin–Cohen brackets, J. Lie Theory, Volume 17 (2007) no. 2, pp. 283-305 | MR 2325700 | Zbl 1123.22009

[8] François Dumas; Emmanuel Royer Poisson structures and star products on quasimodular forms, Algebra Number Theory, Volume 8 (2014) no. 5, pp. 1127-1149 | Article | MR 3263138 | Zbl 1362.17041

[9] Martin Eichler; Don Zagier The theory of Jacobi forms, Progress in Mathematics, 55, Birkhäuser, 1985, v+148 pages | Article | MR 781735 | Zbl 0554.10018

[10] Amine M. El Gradechi The Lie theory of the Rankin–Cohen brackets and allied bi-differential operators, Adv. Math., Volume 207 (2006) no. 2, pp. 484-531 | Article | MR 2271014 | Zbl 1161.11331

[11] Toshiyuki Kobayashi; Michael Pevzner Differential symmetry breaking operators: II. Rankin–Cohen operators for symmetric pairs, Sel. Math., New Ser., Volume 22 (2016) no. 2, pp. 847-911 | Article | MR 3477337 | Zbl 1342.22029

[12] Camille Laurent-Gengoux; Anne Pichereau; Pol Vanhaecke Poisson structures, Grundlehren der Mathematischen Wissenschaften, 347, Springer, 2013, xxiv+461 pages | Article | MR 2906391 | Zbl 1284.53001

[13] François Martin; Emmanuel Royer Formes modulaires et périodes, Formes modulaires et transcendance (Séminaires et Congrès), Volume 12, Société Mathématique de France, 2005, pp. 1-117 | MR 2186573 | Zbl 1104.11017

[14] Georg Oberdieck A Serre derivative for even weight Jacobi Forms (2014) (https://arxiv.org/abs/1209.5628)

[15] Hideki Omori; Yoshiaki Maeda; Naoya Miyazaki; Akira Yoshioka Deformation quantizations of the Poisson algebra of Laurent polynomials, Lett. Math. Phys., Volume 46 (1998) no. 2, pp. 171-180 | Article | MR 1663621 | Zbl 0951.53058

[16] Valentin Ovsienko Exotic deformation quantization, J. Differ. Geom., Volume 45 (1997) no. 2, pp. 390-406 | MR 1449978 | Zbl 0879.58028

[17] Valentin Ovsienko; Pascal Redou Generalized transvectants-Rankin–Cohen brackets, Lett. Math. Phys., Volume 63 (2003) no. 1, pp. 19-28 | Article | MR 1967533 | Zbl 1046.53005

[18] Michael Pevzner Rankin–Cohen brackets and associativity, Lett. Math. Phys., Volume 85 (2008) no. 2-3, pp. 195-202 | Article | MR 2443940 | Zbl 1167.53075

[19] Michael Pevzner A generating function for Rankin–Cohen brackets, Lett. Math. Phys., Volume 108 (2018) no. 12, pp. 2627-2633 | Article | MR 3865750 | Zbl 1457.53070

[20] Emmanuel Royer Quasimodular forms: an introduction, Ann. Math. Blaise Pascal, Volume 19 (2012) no. 2, pp. 297-306 | Article | Numdam | MR 3025137 | Zbl 1268.11055

[21] André Unterberger; Julianne Unterberger Algebras of symbols and modular forms, J. Anal. Math., Volume 68 (1996), pp. 121-143 | Article | MR 1403254 | Zbl 0857.43015

[22] Yi-Jun Yao Autour des déformations de Rankin–Cohen (2007) (Ph. D. Thesis) | Zbl 1423.11007

[23] Don Zagier Modular forms and differential operators, Proc. Indian Acad. Sci., Math. Sci., Volume 104 (1994) no. 1, pp. 57-75 (K. G. Ramanathan memorial issue) | Article | MR 1280058 | Zbl 0806.11022

[24] Don Zagier Elliptic modular forms and their applications, The 1-2-3 of modular forms (Universitext), Springer, 2008, pp. 1-103 | Article | MR 2409678 | Zbl 1259.11042

Cited by Sources: