Let be an additive full subcategory of an abelian category. It is a classical fact that if is contravariantly finite, then the category of finitely presented right -modules is abelian. In this paper, we consider the question asking when the converse holds true for a resolving subcategory of the category of finitely generated modules over a commutative noetherian henselian local ring. We give both affirmative answers and negative answers to this question.
Revised:
Accepted:
Published online:
Ryo Takahashi 1
@article{CRMATH_2021__359_5_577_0, author = {Ryo Takahashi}, title = {Resolving subcategories whose finitely presented module categories are abelian}, journal = {Comptes Rendus. Math\'ematique}, pages = {577--592}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {5}, year = {2021}, doi = {10.5802/crmath.197}, language = {en}, }
Ryo Takahashi. Resolving subcategories whose finitely presented module categories are abelian. Comptes Rendus. Mathématique, Volume 359 (2021) no. 5, pp. 577-592. doi : 10.5802/crmath.197. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.197/
[1] Dimensions of triangulated categories with respect to subcategories, J. Algebra, Volume 399 (2014), pp. 205-219 | DOI | MR | Zbl
[2] A homological dimension related to AB rings, Beitr. Algebra Geom., Volume 60 (2019) no. 2, pp. 225-231 | DOI | MR | Zbl
[3] Homological invariants associated to semi-dualizing bimodules, J. Math. Kyoto Univ., Volume 45 (2005) no. 2, pp. 287-306 | MR | Zbl
[4] Coherent functors, Proceedings of the Conference on Categorical Algebra (La Jolla, Calif., 1965) (1966), pp. 189-231 | DOI | Zbl
[5] Stable module theory, Memoirs of the American Mathematical Society, 94, American Mathematical Society, 1969 | MR | Zbl
[6] The homological theory of maximal Cohen–Macaulay approximations, Mém. Soc. Math. Fr., Nouv. Sér., Volume 38 (1989), pp. 5-37 Colloque en l’honneur de Pierre Samuel (Orsay, 1987) | Numdam | Zbl
[7] Applications of contravariantly finite subcategories, Adv. Math., Volume 86 (1991) no. 1, pp. 111-152 | DOI | MR | Zbl
[8] Almost split sequences in subcategories, J. Algebra, Volume 69 (1981) no. 2, pp. 426-454 | DOI | MR | Zbl
[9] Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. Lond. Math. Soc., Volume 85 (2002) no. 2, pp. 393-440 | DOI | MR | Zbl
[10] Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, 1998 | Zbl
[11] Gorenstein dimensions, Lecture Notes in Mathematics, 1747, Springer, 2000 | MR | Zbl
[12] Semi-dualizing complexes and their Auslander categories, Trans. Am. Math. Soc., Volume 353 (2001) no. 5, pp. 1839-1883 | DOI | MR | Zbl
[13] Finite Gorenstein representation type implies simple singularity, Adv. Math., Volume 218 (2008) no. 4, pp. 1012-1026 | DOI | MR | Zbl
[14] Classification of resolving subcategories and grade consistent functions, Int. Math. Res. Not., Volume 2015 (2015) no. 1, pp. 119-149 | MR | Zbl
[15] Gorenstein injective and projective modules, Math. Z., Volume 220 (1995) no. 4, pp. 611-633 | DOI | MR | Zbl
[16] Syzygies, London Mathematical Society Lecture Note Series, 106, Cambridge University Press, 1985 | MR | Zbl
[17] G-dimension and generalized perfect ideals, Proc. Steklov Inst. Math., Volume 165 (1984) no. 3, pp. 67-71 translation of Tr. Mat. Inst. Steklova 165 (1984), p. 62-66 | MR | Zbl
[18] Symmetry in the vanishing of Ext over Gorenstein rings, Math. Scand., Volume 93 (2003) no. 2, pp. 161-184 | DOI | MR | Zbl
[19] Resolving subcategories closed under certain operations and a conjecture of Dao and Takahashi, Mich. Math. J., Volume 70 (2021) no. 2, pp. 341-367 | DOI
[20] On -regular local rings, Commun. Algebra, Volume 36 (2008) no. 12, pp. 4472-4491 | DOI | MR | Zbl
[21] Contravariantly finite resolving subcategories over commutative rings, Am. J. Math., Volume 133 (2011) no. 2, pp. 417-436 | DOI | MR | Zbl
[22] Classification of dominant resolving subcategories by moderate functions (2020) (to appear in Ill. J. Math., available at https://www.math.nagoya-u.ac.jp/~takahashi/papers.html) | DOI | MR | Zbl
[23] Cohen–Macaulay modules over Cohen–Macaulay rings, London Mathematical Society Lecture Note Series, 146, London Mathematical Society, 1990
Cited by Sources:
Comments - Policy