We describe some results on moduli space of logarithmic connections equipped with framings on a -pointed compact Riemann surface.
Accepted:
Published online:
Indranil Biswas 1; Michi-aki Inaba 2; Arata Komyo 3; Masa-Hiko Saito 4
@article{CRMATH_2021__359_5_617_0, author = {Indranil Biswas and Michi-aki Inaba and Arata Komyo and Masa-Hiko Saito}, title = {On the moduli spaces of framed logarithmic connections on a {Riemann} surface}, journal = {Comptes Rendus. Math\'ematique}, pages = {617--624}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {5}, year = {2021}, doi = {10.5802/crmath.199}, language = {en}, }
TY - JOUR AU - Indranil Biswas AU - Michi-aki Inaba AU - Arata Komyo AU - Masa-Hiko Saito TI - On the moduli spaces of framed logarithmic connections on a Riemann surface JO - Comptes Rendus. Mathématique PY - 2021 SP - 617 EP - 624 VL - 359 IS - 5 PB - Académie des sciences, Paris DO - 10.5802/crmath.199 LA - en ID - CRMATH_2021__359_5_617_0 ER -
%0 Journal Article %A Indranil Biswas %A Michi-aki Inaba %A Arata Komyo %A Masa-Hiko Saito %T On the moduli spaces of framed logarithmic connections on a Riemann surface %J Comptes Rendus. Mathématique %D 2021 %P 617-624 %V 359 %N 5 %I Académie des sciences, Paris %R 10.5802/crmath.199 %G en %F CRMATH_2021__359_5_617_0
Indranil Biswas; Michi-aki Inaba; Arata Komyo; Masa-Hiko Saito. On the moduli spaces of framed logarithmic connections on a Riemann surface. Comptes Rendus. Mathématique, Volume 359 (2021) no. 5, pp. 617-624. doi : 10.5802/crmath.199. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.199/
[1] Orthogonality of natural sheaves on moduli stacks of -bundles with connections on minus points, Sel. Math., New Ser., Volume 7 (2001) no. 2, pp. 213-239 | DOI | MR | Zbl
[2] Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., Volume 85 (1957), pp. 181-207 | DOI | MR | Zbl
[3] The Yang–Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond., Ser. A, Volume 308 (1983), pp. 523-615 | MR | Zbl
[4] On the moduli space of holomorphic -connections on a compact Riemann surface, Eur. J. Math., Volume 6 (2020) no. 2, pp. 321-335 | DOI | MR | Zbl
[5] Isomonodromic deformations of logarithmic connections and stability, Math. Ann., Volume 366 (2016) no. 1-2, pp. 121-140 | DOI | MR | Zbl
[6]
(in preparation)[7] Moduli spaces of framed -Higgs bundles and symplectic geometry, Commun. Math. Phys., Volume 376 (2020) no. 3, pp. 1875-1908 | DOI | MR | Zbl
[8] Line bundles over a moduli space of logarithmic connections on a Riemann surface, Geom. Funct. Anal., Volume 15 (2005) no. 4, pp. 780-808 | DOI | MR | Zbl
[9] The associated map of the nonabelian Gauss–Manin connection, Cent. Eur. J. Math., Volume 10 (2012) no. 4, pp. 1407-1421 | DOI | MR | Zbl
[10] The symplectic nature of fundamental groups of surfaces, Adv. Math., Volume 54 (1984), pp. 200-225 | DOI | MR | Zbl
[11] Moduli of parabolic connections on a curve and Riemann–Hilbert correspondence, J. Algebr. Geom., Volume 22 (2013), pp. 407-480 | DOI | MR | Zbl
[12] Dynamics of the sixth Painlevé equation, Asymptotic theories and Painlevé equations (Séminaires et Congrès), Volume 14, Société Mathématique de France, 2006, pp. 103-167 | Zbl
[13] Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. I., Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 4, pp. 987-1089 | DOI | Zbl
[14] Fuchsian moduli on a Riemann surface – Its Poisson structure and Poincaré–Lefschetz duality, Pac. J. Math., Volume 155 (1992) no. 2, pp. 319-340 | DOI | Zbl
[15] Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and -function, Physica D, Volume 2 (1981) no. 2, pp. 306-352 | DOI | MR | Zbl
[16] Nodal curves and Riccati solutions of Painlevé equations, J. Math. Kyoto Univ., Volume 44 (2004) no. 3, pp. 529-568 | Zbl
Cited by Sources:
Comments - Policy