Comptes Rendus
Number Theory
Galois groups over rational function fields over skew fields
Comptes Rendus. Mathématique, Volume 358 (2020) no. 7, pp. 785-790.

Let H be a skew field of finite dimension over its center k. We solve the Inverse Galois Problem over the field of fractions H(X) of the ring of polynomial functions over H in the variable X, if k contains an ample field.

Soit H un corps gauche de dimension finie sur son centre k. Nous résolvons le Problème Inverse de Galois sur le corps des fractions H(X) de l’anneau des fonctions polynomiales en la variable X et à coefficients dans H, si k contient un corps ample.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.20

Gil Alon 1; François Legrand 2; Elad Paran 1

1 Department of Mathematics and Computer Science, the Open University of Israel, Ra’anana 4353701, Israel
2 Institut für Algebra, Fachrichtung Mathematik, TU Dresden, 01062 Dresden, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_7_785_0,
     author = {Gil Alon and Fran\c{c}ois Legrand and Elad Paran},
     title = {Galois groups over rational function fields over skew fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {785--790},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {7},
     year = {2020},
     doi = {10.5802/crmath.20},
     language = {en},
}
TY  - JOUR
AU  - Gil Alon
AU  - François Legrand
AU  - Elad Paran
TI  - Galois groups over rational function fields over skew fields
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 785
EP  - 790
VL  - 358
IS  - 7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.20
LA  - en
ID  - CRMATH_2020__358_7_785_0
ER  - 
%0 Journal Article
%A Gil Alon
%A François Legrand
%A Elad Paran
%T Galois groups over rational function fields over skew fields
%J Comptes Rendus. Mathématique
%D 2020
%P 785-790
%V 358
%N 7
%I Académie des sciences, Paris
%R 10.5802/crmath.20
%G en
%F CRMATH_2020__358_7_785_0
Gil Alon; François Legrand; Elad Paran. Galois groups over rational function fields over skew fields. Comptes Rendus. Mathématique, Volume 358 (2020) no. 7, pp. 785-790. doi : 10.5802/crmath.20. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.20/

[1] Gil Alon; Elad Paran A quaternionic Nullstellensatz, J. Pure Appl. Algebra, Volume 225 (2020) no. 4, 106572 | DOI | MR | Zbl

[2] Lior Bary-Soroker; Arno Fehm Open problems in the theory of ample fields, Geometric and differential Galois theories (Séminaires et Congrès), Volume 27, Société Mathématique de France, 2013, pp. 1-11

[3] Paul Moritz Cohn Skew fields. Theory of general division rings, Encyclopedia of Mathematics and Its Applications, 57, Cambridge University Press, 1995, xvi+500 pages | Zbl

[4] Bruno Deschamps; François Legrand Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale, J. Pure Appl. Algebra, Volume 224 (2020) no. 5, 106240, 13 pages | DOI | Zbl

[5] Kenneth R. Goodearl; Robert Breckenridge Warfield An Introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, 61, Cambridge University Press, 2004, xxiv+344 pages | MR | Zbl

[6] Basil Gordon; Theodore S. Motzkin On the zeros of polynomials over division rings, Trans. Am. Math. Soc., Volume 116 (1965), pp. 218-226 | DOI | MR

[7] Moshe Jarden Algebraic patching, Springer Monographs in Mathematics, Springer, 2011, xxiv+290 pages | Zbl

[8] Oystein Ore Theory of non-commutative polynomials, Ann. Math., Volume 34 (1933) no. 3, pp. 480-508 | MR | Zbl

[9] Florian Pop Embedding problems over large fields, Ann. Math., Volume 144 (1996) no. 1, pp. 1-34 | MR | Zbl

[10] Florian Pop Little survey on large fields - old & new, Valuation theory in interaction (EMS Series of Congress Reports) (2014), pp. 432-463 | Zbl

[11] Robert L. Vaught Set theory. An introduction, Birkhäuser, 1995, x+167 pages | MR | Zbl

[12] Dariusz M. Wilczynski On the fundamental theorem of algebra for polynomial equations over real composition algebras, J. Pure Appl. Algebra, Volume 218 (2014) no. 7, pp. 1195-1205 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy