Let be a discrete martingale in for in or . In this note, we give upper bounds on the superquantiles of and the quantiles and superquantiles of .
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.207
Emmanuel Rio 1
@article{CRMATH_2021__359_7_813_0, author = {Emmanuel Rio}, title = {Upper bounds for superquantiles of martingales}, journal = {Comptes Rendus. Math\'ematique}, pages = {813--822}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {7}, year = {2021}, doi = {10.5802/crmath.207}, zbl = {07398735}, language = {en}, }
Emmanuel Rio. Upper bounds for superquantiles of martingales. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 813-822. doi : 10.5802/crmath.207. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.207/
[1] Concentration inequalities for sums and martingales, SpringerBriefs in Mathematics, Springer, 2015 | Zbl
[2] A converse to the dominated convergence theorem, Ill. J. Math., Volume 7 (1963), pp. 508-514 | MR | Zbl
[3] Optimal concentration inequalities for dynamical systems, Commun. Math. Phys., Volume 316 (2012) no. 3, pp. 843-889 | DOI | MR | Zbl
[4] Rates of convergence in the central limit theorem for martingales in the non stationary setting (2021) (https://hal.archives-ouvertes.fr/hal-03112369v1)
[5] On the distribution of maxima of martingales, Proc. Am. Math. Soc., Volume 68 (1978) no. 3, pp. 337-338 | MR | Zbl
[6] A simple proof of a theorem of Blackwell & Dubins on the maximum of a uniformly integrable martingale, Séminaire de Probabilitées, Strasbourg / France XXII (Lecture Notes in Mathematics), Volume 1321, Springer, 1988, pp. 214-216 | DOI | Numdam | MR | Zbl
[7] Bounds on the constant in the mean central limit theorem, Ann. Probab., Volume 38 (2010) no. 4, pp. 1672-1689 | MR | Zbl
[8] Concentration inequalities for suprema of unbounded empirical processes (2021) (to appear in Annales Henri Lebesgue, https://hal.archives-ouvertes.fr/hal-01545101/) | Zbl
[9] Sharp martingale and semimartingale inequalities, Monografie Matematyczne. Instytut Matematyczny PAN (New Series), 72, Birkhäuser/Springer, 2012 | MR | Zbl
[10] On normal domination of (super)martingales, Electron. J. Probab., Volume 11 (2006) no. 39, pp. 1049-1070 | MR | Zbl
[11] An Optimal Three-Way Stable and Monotonic Spectrum of Bounds on Quantiles: A Spectrum of Coherent Measures of Financial Risk and Economic Inequality, Risks, Volume 2 (2014) no. 3, pp. 349-392 | DOI
[12] Best possible bounds of the von Bahr–Esseen type, Ann. Funct. Anal., Volume 6 (2015) no. 4, pp. 1-29 | DOI | MR | Zbl
[13] Exact Rosenthal-type bounds, Ann. Probab., Volume 43 (2015) no. 5, pp. 2511-2544 | MR | Zbl
[14] Exponential inequalities for weighted sums of bounded random variables, Electron. Commun. Probab., Volume 20 (2015), 77, 10 pages | MR | Zbl
[15] About Doob’s inequality, entropy and Tchebichef, Electron. Commun. Probab., Volume 23 (2018), 78, 12 pages | MR | Zbl
[16] Sur les valeurs limites des intégrales, Liouville J., Volume 19 (1874), pp. 157-160 | Zbl
Cited by Sources:
Comments - Policy