The class of Worpitzky-compatible subarrangements of a Weyl arrangement together with an associated Eulerian polynomial was recently introduced by Ashraf, Yoshinaga and the first author, which brings the characteristic and Ehrhart quasi-polynomials into one formula. The subarrangements of the braid arrangement, the Weyl arrangement of type , are known as the graphic arrangements. We prove that the Worpitzky-compatible graphic arrangements are characterized by cocomparability graphs. This can be regarded as a counterpart of the characterization by Stanley and Edelman–Reiner of free and supersolvable graphic arrangements in terms of chordal graphs. Our main result yields new formulas for the chromatic and graphic Eulerian polynomials of cocomparability graphs.
Accepté le :
Publié le :
Tan Nhat Tran 1 ; Akiyoshi Tsuchiya 2
@article{CRMATH_2021__359_6_665_0, author = {Tan Nhat Tran and Akiyoshi Tsuchiya}, title = {Worpitzky-compatible subarrangements of braid arrangements and cocomparability graphs}, journal = {Comptes Rendus. Math\'ematique}, pages = {665--674}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.210}, language = {en}, }
TY - JOUR AU - Tan Nhat Tran AU - Akiyoshi Tsuchiya TI - Worpitzky-compatible subarrangements of braid arrangements and cocomparability graphs JO - Comptes Rendus. Mathématique PY - 2021 SP - 665 EP - 674 VL - 359 IS - 6 PB - Académie des sciences, Paris DO - 10.5802/crmath.210 LA - en ID - CRMATH_2021__359_6_665_0 ER -
Tan Nhat Tran; Akiyoshi Tsuchiya. Worpitzky-compatible subarrangements of braid arrangements and cocomparability graphs. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 665-674. doi : 10.5802/crmath.210. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.210/
[1] The freeness of ideal subarrangements of Weyl arrangements, J. Eur. Math. Soc., Volume 18 (2016) no. 6, pp. 1339-1348 | MR | Zbl
[2] Eulerian polynomials for subarrangements of Weyl arrangements, Adv. Appl. Math., Volume 120 (2020), 102064, 24 pages | MR | Zbl
[3] On a refinement of the generalized Catalan numbers for Weyl groups, Trans. Am. Math. Soc., Volume 357 (2005) no. 1, pp. 179-196 | DOI | MR | Zbl
[4] Expansions of chromatic polynomials and log-concavity, Trans. Am. Math. Soc., Volume 332 (1992) no. 2, pp. 729-756 | DOI | MR | Zbl
[5] On the cover polynomial of a digraph, J. Comb. Theory, Ser. B, Volume 65 (1995) no. 2, pp. 273-290 | DOI | MR | Zbl
[6] Free hyperplane arrangements between and , Math. Z., Volume 215 (1994) no. 3, pp. 347-365 | DOI | MR | Zbl
[7] Methodus universalis series summandi ulterius promota, Commentarii Acd. Scientiarum Imperialis Petropolitanae, Volume 8 (1736), pp. 147-158 (Reprinted in his Opera Omnia, series 1, volume 14, 124-137, 1741)
[8] Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung., Volume 18 (1967), pp. 25-66 | DOI | MR | Zbl
[9] A characterization of comparability graphs and interval graphs, Can. J. Math., Volume 16 (1964), pp. 539-548 | DOI | MR | Zbl
[10] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990 | MR | Zbl
[11] Free arrangements of hyperplanes and supersolvable lattices, Adv. Math., Volume 52 (1984) no. 3, pp. 248-258 | DOI | MR | Zbl
[12] The Topology of the Coloring Complex, J. Algebr. Comb., Volume 21 (2005) no. 3, pp. 311-329 | DOI | MR | Zbl
[13] Basic derivations for subarrangements of Coxeter arrangements, J. Algebr. Comb., Volume 2 (1993) no. 3, pp. 291-320 | DOI | MR | Zbl
[14] Domination on cocomparability graphs, SIAM J. Discrete Math., Volume 6 (1993) no. 3, pp. 400-417 | DOI | MR | Zbl
[15] Optimal greedy algorithms for indifference graphs, Comput. Math. Appl., Volume 25 (1993) no. 7, pp. 15-25 | DOI | MR | Zbl
[16] Modular decomposition and transitive orientation, Discrete Math., Volume 201 (1999) no. 1-3, pp. 189-241 | DOI | MR | Zbl
[17] An optimal greedy heuristic to color interval graphs, Inf. Process. Lett., Volume 37 (1991) no. 1, pp. 21-25 | DOI | MR | Zbl
[18] Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer, 1992 | MR | Zbl
[19] Eulerian numbers, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 2015 | Zbl
[20] Alcoves corresponding to an affine Weyl group, J. Lond. Math. Soc., Volume 35 (1987), pp. 42-55 | MR | Zbl
[21] Supersolvable lattices, Algebra Univers., Volume 2 (1972), pp. 197-217 | DOI | MR | Zbl
[22] The coloring ideal and coloring complex of a graph, J. Algebr. Comb., Volume 14 (2001) no. 1, pp. 73-84 | DOI | MR | Zbl
[23] Signed graphs and the freeness of the Weyl subarrangements of type , Discrete Math., Volume 342 (2019) no. 1, pp. 233-249 | DOI | MR | Zbl
[24] On floors and ceilings of the -Catalan arrangement, Electron. J. Comb., Volume 21 (2014) no. 4, P4.36, 15 pages | MR | Zbl
[25] Combinatorics and partially ordered sets: Dimension theory, Johns Hopkins Series in the Mathematical Sciences, Johns Hopkins University Press, 1992 | Zbl
[26] Worpitzky partitions for root systems and characteristic quasi-polynomials, Tôhoku Math. J., Volume 70 (2018) no. 1, pp. 39-63 | MR | Zbl
Cité par Sources :
Commentaires - Politique