[Semiclassical Resonances Generated by Crossings of Classical Trajectories]
We consider a system of one-dimensional semiclassical Schrödinger operators with small interactions with respect to the semiclassical parameter . We study the asymptotics in the semiclassical limit of the resonances near a non-trapping energy for both corresponding classical Hamiltonians. We show the existence of resonances of width , contrary to the scalar case, under the condition that two classical trajectories cross and compose a periodic trajectory with period .
Nous considérons un système d’opérateurs de Schrödinger semiclassique 1D avec petites interactions par rapport au paramètre semiclassique . Nous étudions l’asymptotique des résonances en limite semiclassique près d’une énergie non-captive pour les deux hamiltoniens classiques correspondants. Nous montrons l’existence de résonances de largeur , contrairement au cas scalaire, sous la condition que deux trajectoires classiques se croisent et composent une trajectoire périodique de période .
Revised:
Accepted:
Published online:
Kenta Higuchi 1
@article{CRMATH_2021__359_6_657_0, author = {Kenta Higuchi}, title = {R\'esonances {Semiclassiques} {Engendr\'ees} par des {Croisements} de {Trajectoires} {Classiques}}, journal = {Comptes Rendus. Math\'ematique}, pages = {657--663}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.209}, language = {fr}, }
Kenta Higuchi. Résonances Semiclassiques Engendrées par des Croisements de Trajectoires Classiques. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 657-663. doi : 10.5802/crmath.209. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.209/
[1] Resonances for homoclinic trapped sets, Astérisque, 405, Société Mathématique de France, 2018 | Zbl
[2] On the location of resonances for Schrödinger operators in the semiclassical limit I. Resonances free domains, J. Math. Anal. Appl., Volume 126 (1987) no. 1, pp. 90-99 | DOI | Zbl
[3] On the location of resonances for Schrödinger operators in the semiclassical limit II. Barrier Top Resonances, Commun. Partial Differ. Equations, Volume 12 (1987) no. 2, pp. 201-222 erratum in ibid. 13 (1988), no. 3, p. 377–381. | Zbl
[4] Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not., Volume 2002 (2002) no. 5, pp. 221-241 | DOI | MR | Zbl
[5] Spectral asymptotics in the semi-classical limit, Cambridge University Press, 1999 no. 268 | Zbl
[6] Mathematical theory of scattering resonances, 200, American Mathematical Society, 2019 | MR | Zbl
[7] Widths of resonances above an energy-level crossing, J. Funct. Anal., Volume 280 (2021) no. 6, 108918 | DOI | MR
[8] Semiclassical resonances generated by a closed trajectory of hyperbolic type, Commun. Math. Phys., Volume 108 (1987) no. 3, pp. 391-421 | DOI | MR | Zbl
[9] Résonances en limite semi-classique, Mém. Soc. Math. Fr., Nouv. Sér., Volume 24-25 (1986), pp. 1-228 | Numdam | Zbl
[10] Resonance free domain for a system of Schrödinger operators with energy-level crossings, Rev. Math. Phys., Volume 33 (2021) no. 3, 2150007 | DOI | MR
[11] An introduction to semiclassical and microlocal analysis, 994, Springer, 2002 | Zbl
[12] Resonance free domains for non globally analytic potentials, Ann. Henri Poincaré, Volume 3 (2002) no. 4, pp. 739-756 | DOI | MR | Zbl
[13] Semiclassical resonances generated by non-degenerate critical points, Pseudo-differential operators (Lecture Notes in Mathematics), Volume 1256, Springer, 1987, pp. 402-429 | DOI | Zbl
[14] Semiclassical analysis, 138, American Mathematical Society, 2012 | MR | Zbl
Cited by Sources:
Comments - Policy