In this article, we give a necessary and sufficient condition for ampleness of semistable vector bundles with vanishing discriminant on a smooth projective variety . As an application, we show ampleness of some special vector bundles on certain ruled surfaces. We prove similar results for parabolic ampleness.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.222
Snehajit Misra 1 ; Nabanita Ray 2
@article{CRMATH_2021__359_6_763_0, author = {Snehajit Misra and Nabanita Ray}, title = {On {Ampleness} of vector bundles}, journal = {Comptes Rendus. Math\'ematique}, pages = {763--772}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.222}, zbl = {07390659}, language = {en}, }
Snehajit Misra; Nabanita Ray. On Ampleness of vector bundles. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 763-772. doi : 10.5802/crmath.222. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.222/
[1] An ampleness criterion for rank 2 vector bundles on surfaces, Vietnam J. Math., Volume 48 (2020) no. 1, pp. 125-129 | DOI | MR | Zbl
[2] Chern classes for parabolic bundles, J. Math. Kyoto Univ., Volume 37 (1997) no. 4, pp. 597-613 | MR | Zbl
[3] Parabolic ample bundles, Math. Ann., Volume 307 (1997) no. 3, pp. 511-529 | DOI | MR | Zbl
[4] Parabolic bundles as orbifold bundles, Duke Math. J., Volume 88 (1997) no. 2, pp. 305-325 | MR | Zbl
[5] On semistable principal bundles over a complex projective manifold, Int. Math. Res. Not., Volume 2008 (2008), rnn035, 28 pages | Zbl
[6] Positivity of vector bundles on homogeneous varieties, Int. J. Math., Volume 31 (2020) no. 12, 2050097, 11 pages | MR | Zbl
[7] Nef line bundles on flag bundles on a curve over , Arch. Math., Volume 101 (2013) no. 2, pp. 105-110 | DOI | MR | Zbl
[8] Algebraic 2-vector bundles on ruled surfaces, Ann. Univ. Ferrara, Nuova Ser., Sez. VII, Volume 37 (1991), pp. 55-64 | MR | Zbl
[9] The cones of effective cycles on projective bundles over curves, Math. Z., Volume 269 (2011) no. 1-2, pp. 449-459 | DOI | MR | Zbl
[10] Ample Vector bundles, Publ. Math., Inst. Hautes Étud. Sci., Volume 29 (1966), pp. 63-94 | Numdam | Zbl
[11] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | Zbl
[12] Positivity properties of toric vector bundles, Ann. Inst. Fourier, Volume 60 (2010) no. 2, pp. 607-640 | DOI | Numdam | MR | Zbl
[13] The Geometry of Moduli Spaces of Sheaves, Cambridge University Press, 2010 | DOI | Zbl
[14] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004 | Zbl
[15] Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 49, Springer, 204 | Zbl
[16] Stability of Einstein–Hermitian vector bundles, Manuscr. Math., Volume 42 (1983), pp. 245-257 | DOI | MR | Zbl
[17] Semistable sheaves on homogeneous spaces and abelian varieties, Proc. Indian Acad. Sci., Math. Sci., Volume 93 (1984) no. 1, pp. 1-12 | DOI | MR | Zbl
[18] Semi-homogeneous vector bundles on an abelian variety, J. Math. Kyoto Univ., Volume 18 (1978) no. 2, pp. 239-272 | MR | Zbl
[19] Normalized Tautological divisors of semi-stable vector bundles, Free resolutions of coordinate rings of projective varieties and related topics (Sūrikaisekikenkyūsho Kōkyūroku), Volume 1075, RIMS, Kyoto University, 1999, pp. 167-173 | MR | Zbl
[20] Positive vector bundles on complex surfaces, Manuscr. Math., Volume 50 (1985), pp. 133-144 | DOI | MR | Zbl
[21] Strictly nef divisors and Fano threefolds, J. Reine Angew. Math., Volume 464 (1995), pp. 187-206 | MR | Zbl
[22] Some results in the theory of vector bundles, Nagoya Math. J., Volume 52 (1973), pp. 97-128 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique