We exhibit some new infinite families of rational values of , some of them squares of rationals, for which the group or even the semigroup generated by the matrices and is not free.
Revised:
Accepted:
Published online:
Ilia Smilga 1
@article{CRMATH_2021__359_8_983_0, author = {Ilia Smilga}, title = {New sequences of non-free rational points}, journal = {Comptes Rendus. Math\'ematique}, pages = {983--989}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {8}, year = {2021}, doi = {10.5802/crmath.230}, language = {en}, }
Ilia Smilga. New sequences of non-free rational points. Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 983-989. doi : 10.5802/crmath.230. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.230/
[1] Non-free points for groups generated by a pair of matrices, J. Lond. Math. Soc., Volume 62 (2000) no. 3, pp. 795-801 | DOI | MR | Zbl
[2] Pell’s equation and two generator free Möbius groups, Bull. Lond. Math. Soc., Volume 25 (1993) no. 6, pp. 527-532 | DOI | Zbl
[3] Quelques groupes libres de matrices, C. R. Math. Acad. Sci. Paris, Volume 241 (1955), pp. 1689-1691 | MR | Zbl
[4] Free semigroups of matrices, Pac. J. Math., Volume 77 (1978) no. 1, pp. 57-69 | DOI | MR | Zbl
[5] On certain pairs of matrices which generate free groups, Can. J. Math., Volume 10 (1958), pp. 279-284 | DOI | MR | Zbl
[6] The structure of two-parabolic space: parabolic dust and iteration, Geom. Dedicata, Volume 131 (2008), pp. 27-48 | DOI | MR | Zbl
[7] Rational nonfree points of the complex plane, Algorithmic problems in the theory of groups and semigroups (Russian), Tul’skij Gosudarstvennyj Pedagogicheskij Institut, Tula, 1986, pp. 72-80 | MR
[8] The Riley slice of Schottky space, Proc. Lond. Math. Soc., Volume 69 (1994) no. 1, pp. 72-90 | DOI | MR | Zbl
[9] Non-freeness of groups generated by two parabolic elements with small rational parameters (2020) (https://arxiv.org/abs/1901.06375, To appear in the Michigan Mathematical Journal, 2022)
[10] Groups generated by two parabolic linear fractional transformations, Can. J. Math., Volume 21 (1969), pp. 1388-1403 | DOI | MR | Zbl
[11] On certain pairs of matrices which do not generate a free group, Can. Math. Bull., Volume 4 (1961), pp. 49-52 | MR | Zbl
[12] A property of a representation of a free group, Dokl. Akad. Nauk SSSR, n. Ser., Volume 57 (1947), pp. 657-659 | MR | Zbl
[13] On some free semigroups, generated by matrices, Czech. Math. J., Volume 65(140) (2015) no. 2, pp. 289-299 | DOI | MR | Zbl
[14] Quadratic Diophantine equations and two generator Möbius groups, J. Aust. Math. Soc., Ser. A, Volume 61 (1996) no. 3, pp. 360-368 | Zbl
[15] SageMath, the Sage Mathematics Software System (Version 8.1), 2017 (http://www.sagemath.org)
Cited by Sources:
Comments - Policy