On analyse le problème de Cauchy–Dirichlet pour l’équation de Moore–Gibson–Thompson avec des données non-homogènes. Deux méthodes sont considérées : la théorie des équations hyperboliques et la théorie des semi-groupes d’opérateurs. Il s’agit d’un problème hyperbolique mixte avec une frontière spatiale caractéristique. Par conséquent, les résultats de régularité présentent certaines lacunes par rapport au cas non caractéristique.
The Cauchy–Dirichlet problem for the Moore–Gibson–Thompson equation is analyzed. With the focus on non-homogeneous boundary data, two approaches are offered: one is based on the theory of hyperbolic equations, while the other one uses the theory of operator semigroups. This is a mixed hyperbolic problem with a characteristic spatial boundary. Hence, the regularity results exhibit some deficiencies when compared with the non-characteristic case.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.231
Francesca Bucci 1 ; Matthias Eller 2
@article{CRMATH_2021__359_7_881_0, author = {Francesca Bucci and Matthias Eller}, title = {The {Cauchy{\textendash}Dirichlet} problem for the {Moore{\textendash}Gibson{\textendash}Thompson} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {881--903}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {7}, year = {2021}, doi = {10.5802/crmath.231}, zbl = {07398741}, language = {en}, }
TY - JOUR AU - Francesca Bucci AU - Matthias Eller TI - The Cauchy–Dirichlet problem for the Moore–Gibson–Thompson equation JO - Comptes Rendus. Mathématique PY - 2021 SP - 881 EP - 903 VL - 359 IS - 7 PB - Académie des sciences, Paris DO - 10.5802/crmath.231 LA - en ID - CRMATH_2021__359_7_881_0 ER -
Francesca Bucci; Matthias Eller. The Cauchy–Dirichlet problem for the Moore–Gibson–Thompson equation. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 881-903. doi : 10.5802/crmath.231. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.231/
[1] Moore–Gibson–Thompson equation with memory in a history framework: a semigroup approach, Z. Angew. Math. Phys., Volume 69 (2018) no. 4, 106, 19 pages | DOI | MR | Zbl
[2] Feedback control of the acoustic pressure in ultrasonic wave propagation, Optimization, Volume 68 (2019) no. 10, pp. 1811-1854 | DOI | MR | Zbl
[3] On the regularity of solutions to the Moore–Gibson–Thompson equation: a perspective via wave equations with memory, J. Evol. Equ., Volume 20 (2020) no. 3, pp. 837-867 | DOI | MR | Zbl
[4] Global attractors for a third order in time nonlinear dynamics, J. Differ. Equations, Volume 261 (2016) no. 1, pp. 113-147 | DOI | MR | Zbl
[5] On long time behavior of Moore–Gibson–Thompson equation with molecular relaxation, Evol. Equ. Control Theory, Volume 5 (2016) no. 4, pp. 661-676 | MR | Zbl
[6] Sulla conduzione del calore, Atti Del Seminar. Mat. Fis. Univ. Modena, Volume 3 (1949), pp. 83-101 | MR | Zbl
[7] On a form of heat conduction equation which eliminates the paradox of instantaneous propagation, C. R. Math. Acad. Sci. Paris, Volume 246 (1958), pp. 431-433 | Zbl
[8] Introduction à la théorie des équations aux dérivées partielles linéaires [Introduction to the theory of linear partial differential equations], Gauthier-Villars, 1981 (Ouvrage publié avec le concours du C.N.R.S) | Zbl
[9] Nonexistence of global solutions for the semilinear Moore–Gibson–Thompson equation in the conservative case, Discrete Contin. Dyn. Syst., Volume 40 (2020) no. 9, pp. 5513-5540 | DOI | MR | Zbl
[10] Chaotic behaviour of the solutions of the Moore–Gibson–Thompson equation, Appl. Math. Inf. Sci., Volume 9 (2015) no. 5, pp. 2233-2238 | DOI | MR
[11] Integral Equations and Applications, Cambridge University Press, 2008 | Zbl
[12] Models of nonlinear acoustics viewed as an approximation of the Navier–Stokes and Euler compressible isentropic systems, Commun. Math. Sci., Volume 18 (2020) no. 8, pp. 2075-2119 | DOI | MR | Zbl
[13] The Moore–Gibson–Thompson equation with memory in the critical case, J. Differ. Equations, Volume 261 (2016) no. 7, pp. 4188-4222 | DOI | MR | Zbl
[14] A note on the Moore–Gibson–Thompson equation with memory of type II, J. Evol. Equ., Volume 20 (2020) no. 4, pp. 1251-1268 | DOI | MR | Zbl
[15] On the Moore–Gibson–Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., Volume 76 (2017) no. 3, pp. 641-655 | DOI | MR | Zbl
[16] Theory of Nonlinear Acoustics in Fluids, Fluid Mechanics and Its Applications, Fluid Mechanics and its Applications, 67, Springer, 2006 | Zbl
[17] Second order linear differential equations in Banach spaces, North-Holland Mathematics Studies, 108, North-Holland, 1985 | MR | Zbl
[18] The analysis of linear partial differential operators. II. Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften, 257, Springer, 1983 | Zbl
[19] The analysis of linear partial differential operators, III. Pseudodifferential operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985 | Zbl
[20] Nonlinear acoustic phenomena in viscous thermally relaxing fluids: Shock bifurcation and the emergence of diffusive solitons, J. Acoust. Soc. Am., Volume 124 (2008) no. 4, p. 2491-2491 | DOI
[21] Second-sound phenomena in inviscid, thermally relaxing gases, Discrete Contin. Dyn. Syst., Volume 19 (2014) no. 7, pp. 2189-2205 | MR | Zbl
[22] Mathematics of nonlinear acoustics, Evol. Equ. Control Theory, Volume 4 (2015) no. 4, pp. 447-491 | DOI | MR | Zbl
[23] Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound, Control Cybern., Volume 40 (2011) no. 4, pp. 971-988 | MR | Zbl
[24] Wellposedness and exponential decay of the energy in the nonlinear Moore–Gibson–Thompson equation arising in high intensity ultrasound, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 11, 1250035, 34 pages | Zbl
[25] The Jordan–Moore–Gibson–Thompson equation: well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time, Math. Models Methods Appl. Sci., Volume 29 (2019) no. 13, pp. 2523-2556 | DOI | MR | Zbl
[26] Vanishing relaxation time limit of the Jordan–Moore–Gibson–Thompson wave equation with Neumann and absorbing boundary conditions, Pure Appl. Funct. Anal., Volume 5 (2020) no. 1, pp. 1-26 | MR | Zbl
[27] Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., Volume 65 (1986) no. 2, pp. 149-192 | MR | Zbl
[28] Regularity of hyperbolic equations under -Dirichlet boundary terms, Appl. Math. Optim., Volume 10 (1983) no. 3, pp. 275-286 | DOI | MR | Zbl
[29] Control theory for partial differential equations: continuous and approximation theories, I. Abstract parabolic systems; II. Abstract hyperbolic-like systems over a finite time horizon, Encyclopedia of Mathematics and Its Applications, 74-75, Cambridge University Press, 2000 | Zbl
[30] Moore–Gibson–Thompson equation with memory, part II: General decay of energy, J. Differ. Equations, Volume 259 (2015) no. 12, pp. 7610-7635 | DOI | MR | Zbl
[31] Moore–Gibson–Thompson equation with memory. part I: Exponential decay of energy, Z. Angew. Math. Phys., Volume 67 (2016) no. 2, 17, 23 pages | MR | Zbl
[32] An inverse problem for Moore–Gibson–Thompson equation arising in high intensity ultrasound (2020) (https://arxiv.org/abs/2001.07673v1)
[33] Contrôle des systèmes distribués singuliers, Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science], 13, Gauthier-Villars, 1983 | Zbl
[34] Non-Homogeneous Boundary Value Problems and Applications, Vols. I and II, Grundlehren der mathematischen Wissenschaften, 181-182, Springer, 1972
[35] An inverse problem for a third order PDE arising in high-intensity ultrasound: global uniqueness and stability by one boundary measurement, J. Inverse Ill-Posed Probl., Volume 21 (2013) no. 6, pp. 825-869 | MR | Zbl
[36] Inverse problem for a linearized Jordan–Moore–Gibson–Thompson equation, New prospects in direct, inverse and control problems for evolution equations (Springer INdAM Series), Volume 10, Springer, 2014, pp. 305-351 (selected papers based on the presentations at the international conference “Differential equations, inverse problems and control theory”, Cortona, Italy, June 16–21, 2013) | MR | Zbl
[37] New general decay results for a Moore–Gibson–Thompson equation with memory, Appl. Anal., Volume 99 (2020) no. 15, pp. 2622-2640 | DOI | MR | Zbl
[38] Controllability results for the Moore–Gibson–Thompson equation arising in nonlinear acoustics, J. Differ. Equations, Volume 266 (2019) no. 12, pp. 7813-7843 | DOI | MR | Zbl
[39] An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., Volume 35 (2012) no. 15, pp. 1896-1929 | DOI | MR | Zbl
[40] Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy, Appl. Math. Optim., Volume 76 (2017) no. 2, pp. 261-301 | DOI | MR | Zbl
[41] Wellposedness and decay rates for the Cauchy problem of the Moore–Gibson–Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., Volume 80 (2019) no. 2, pp. 447-478 | DOI | MR | Zbl
[42] Optimal scalar products in the Moore–Gibson–Thompson equation, Evol. Equ. Control Theory, Volume 8 (2019) no. 1, pp. 203-220 | DOI | MR | Zbl
[43] Global well-posedness of the Cauchy problem for the Jordan–Moore–Gibson–Thompson equation (2019) (submitted, available online at http://nbn-resolving.de/urn:nbn:de:bsz:352-2-8ztzhsco3jj82, in the Konstanzer Schriften in Mathematik series, vol. 382, 29 pages, published by the KOPS - Universität Konstanz)
[44] Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Am. Math. Soc., Volume 189 (1974), pp. 303-318 | MR | Zbl
[45] Theoretical Foundations of Nonlinear Acoustics, Studies in Soviet Science, Consultants Bureau, New York and London, 1977 (Translated from the Russian by Robert T. Beyer) | Zbl
[46] Mixed problems for hyperbolic equations. I: Energy inequalities and II: Existence theorems with zero initial datas and energy inequalities with initials datas, J. Math. Kyoto Univ., Volume 10 (1970), p. 349-373, 403–417 | MR | Zbl
[47] Hyperbolic boundary value problems, Cambridge University Press, 1982 (translated from the Japanese by Katsumi Miyahara) | Zbl
[48] Cosine operator functions, Diss. Math., Volume 49 (1966), p. 47 | MR | Zbl
[49] An examination of the possible effect of the radiation of heat on the propagation of sound, Philos. Mag., Volume 1 (1851) no. 4, pp. 305-317 | DOI
[50] Sharp Interior and Boundary Regularity of the SMGTJ-equation with Dirichlet or Neumann boundary control, Semigroups of Operators – Theory and Applications (J. Banasiak; A. Bobrowski; M. Lachowicz; Y. Tomilov, eds.) (Springer Proceedings in Mathematics & Statistics), Volume 325, Springer, 2020 (Selected papers based on the presentations at the conference, SOTA 2018, Kazimierz Dolny, Poland, September 30 – October 5, 2018. In honour of Jan Kisyński’s 85th birthday) | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique