[Dérivée par rapport au domaine dans l'équation de Maxwell sous des hypothèses de plus faible régularité des données]
On considère un problème d'optimisation de forme dans le cadre des équations de Maxwell avec une condition de bord dissipative. On établit un résultat de dérivabilité par rapport au domaine dans le cas de faible régularité. Au détour de cette preuve, on établit la régularité « cachée » des traces du champ éléctrique et magnétique sur le bord du domaine.
We consider a shape optimization problem for Maxwell's equations with a strictly dissipative boundary condition. In order to characterize the shape derivative as a solution to a boundary value problem, sharp regularity of the boundary traces is critical. This Note establishes the Fréchet differentiability of a shape functional.
Accepté le :
Publié le :
John Cagnol 1 ; Matthias Eller 2
@article{CRMATH_2010__348_21-22_1225_0, author = {John Cagnol and Matthias Eller}, title = {Shape optimization for the {Maxwell} equations under weaker regularity of the data}, journal = {Comptes Rendus. Math\'ematique}, pages = {1225--1230}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.021}, language = {en}, }
TY - JOUR AU - John Cagnol AU - Matthias Eller TI - Shape optimization for the Maxwell equations under weaker regularity of the data JO - Comptes Rendus. Mathématique PY - 2010 SP - 1225 EP - 1230 VL - 348 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2010.10.021 LA - en ID - CRMATH_2010__348_21-22_1225_0 ER -
John Cagnol; Matthias Eller. Shape optimization for the Maxwell equations under weaker regularity of the data. Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1225-1230. doi : 10.1016/j.crma.2010.10.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.021/
[1] Shape derivative in the wave equation with Dirichlet boundary conditions, J. Differential Equations, Volume 158 (1999) no. 2, pp. 175-210
[2] On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition, Discrete Contin. Dyn. Syst. Ser. S, Volume 2 (2009) no. 3, pp. 473-481
[3] Domain Decomposition Methods in Optimal Control of Partial Differential Equations, Internat. Ser. Numer. Math., vol. 148, Birkhäuser Verlag, Basel, 2004
[4] Shape Sensitivity Analysis of a Quasi-Electrostatic Piezoelectric System in Multilayered Media, Math. Methods Appl. Sci., 2010
[5] Initial–boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., Volume 28 (1975) no. 5, pp. 607-675
[6] Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Ser. Comput. Math., vol. 16, Springer-Verlag, Berlin, 1992
[7] Hidden boundary shape derivative for the solution to Maxwell equations and non cylindrical wave equations, Optimal Control of Coupled Systems of Partial Differential Equations, Internat. Ser. Numer. Math., vol. 158, Birkhäuser, Basel, 2009, pp. 319-345
Cité par Sources :
Commentaires - Politique