We compute the exact value of the least “relative perimeter” of a shape , with a given area, contained in a unit square; the relative perimeter of being the length of the boundary of that does not touch the border of the square.
Accepté le :
Publié le :
Haim Brezis 1, 2, 3 ; Alfred Bruckstein 4
@article{CRMATH_2021__359_9_1191_0, author = {Haim Brezis and Alfred Bruckstein}, title = {A sharp relative isoperimetric inequality for the square}, journal = {Comptes Rendus. Math\'ematique}, pages = {1191--1199}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {9}, year = {2021}, doi = {10.5802/crmath.243}, language = {en}, }
Haim Brezis; Alfred Bruckstein. A sharp relative isoperimetric inequality for the square. Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1191-1199. doi : 10.5802/crmath.243. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.243/
[1] On Short Cuts or Fencing in Rectangular Strips (2010) (https://arxiv.org/abs/1011.5920)
[2] BMO-Type Norms Related to the Perimeter of Sets, Commun. Pure Appl. Math., Volume 69 (2016) no. 6, pp. 1062-1086 | DOI | MR | Zbl
[3] Lévy–Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator, Invent. Math., Volume 123 (1996) no. 2, pp. 259-281 | DOI | Zbl
[4] Some remarks in isoperimetry of Gaussian type, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 36 (2000) no. 4, pp. 419-434 | DOI | Zbl
[5] A functional form of the isoperimetric inequality for the Gaussian measure, J. Funct. Anal., Volume 135 (1996) no. 1, pp. 39-49 | DOI | MR | Zbl
[6] An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space, Ann. Probab., Volume 25 (1997) no. 1, pp. 206-214 | MR | Zbl
[7] Gitterperiodische Punktmengen und Isoperimetrie, Monatsh. Math., Volume 76 (1972), pp. 410-418 | DOI | MR | Zbl
[8] The Isoperimetric Problem on Surfaces, Amer. Math. Monthly, Volume 106 (1999) no. 5, pp. 430-439 | DOI | MR | Zbl
[9] The Poincaré–Miranda theorem, Amer. Math. Monthly, Volume 104 (1997) no. 6, pp. 545-550 | Zbl
[10] Simple proofs of the Hadamard and Poincaré–Miranda theorems using the Brouwer fixed point theorem, Amer. Math. Monthly, Volume 126 (2019) no. 3, pp. 260-263 | DOI | Zbl
[11] Sur certaines solutions particulières du problème des trois corps, Bull. Astronomique, Volume 1 (1884), pp. 65-74 | Zbl
[12] The isoperimetric problem, Global theory of minimal surfaces (David Hoffman, ed.) (Clay Mathematics Proceedings), Volume 2, American Mathematical Society, 2005, pp. 175-209 (Clay Mathematics Institute 2001 summer school, Berkeley, CA, USA, June 25–July 27, 2001) | MR | Zbl
Cité par Sources :
Commentaires - Politique