Let be a smooth projective curve over . Let . Let be the Quot scheme parameterizing torsion quotients of the vector bundle of degree . In this article we study the nef cone of . We give a complete description of the nef cone in the case of elliptic curves. We compute it in the case when and very general, in terms of the nef cone of the second symmetric product of . In the case when and very general, we give upper and lower bounds for the Nef cone. In general, we give a necessary and sufficient criterion for a divisor on to be nef.
Accepté le :
Accepté après révision le :
Publié le :
Chandranandan Gangopadhyay 1 ; Ronnie Sebastian 1
@article{CRMATH_2021__359_8_999_0, author = {Chandranandan Gangopadhyay and Ronnie Sebastian}, title = {Nef cones of some {Quot} schemes on a {Smooth} {Projective} {Curve}}, journal = {Comptes Rendus. Math\'ematique}, pages = {999--1022}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {8}, year = {2021}, doi = {10.5802/crmath.245}, language = {en}, }
TY - JOUR AU - Chandranandan Gangopadhyay AU - Ronnie Sebastian TI - Nef cones of some Quot schemes on a Smooth Projective Curve JO - Comptes Rendus. Mathématique PY - 2021 SP - 999 EP - 1022 VL - 359 IS - 8 PB - Académie des sciences, Paris DO - 10.5802/crmath.245 LA - en ID - CRMATH_2021__359_8_999_0 ER -
Chandranandan Gangopadhyay; Ronnie Sebastian. Nef cones of some Quot schemes on a Smooth Projective Curve. Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 999-1022. doi : 10.5802/crmath.245. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.245/
[1] On the Abel–Jacobi map for divisors of higher rank on a curve, Math. Ann., Volume 299 (1994) no. 4, pp. 641-672 | DOI | MR | Zbl
[2] Automorphisms of the quot schemes associated to compact Riemann surfaces, Int. Math. Res. Not., Volume 2015 (2015) no. 6, pp. 1445-1460 | DOI | MR | Zbl
[3] Brauer groups of Quot schemes, Mich. Math. J., Volume 64 (2015) no. 3, pp. 493-508 | DOI | MR | Zbl
[4] Nef cone of flag bundles over a curve, Kyoto J. Math., Volume 54 (2014) no. 2, pp. 353-366 | DOI | MR | Zbl
[5] On the symmetric product of a curve with general moduli, Geom. Dedicata, Volume 78 (1999) no. 3, pp. 327-343 | DOI | MR | Zbl
[6] Fundamental algebraic geometry: Grothendieck’s FGA explained, Mathematical Surveys and Monographs, 123, American Mathematical Society, 2005 | DOI | Zbl
[7] Automorphisms of relative Quot schemes, Proc. Indian Acad. Sci., Math. Sci., Volume 129 (2019) no. 5, 85, 11 pages | DOI | MR | Zbl
[8] Fundamental group schemes of some quot schemes on a smooth projective curve, J. Algebra, Volume 562 (2020), pp. 290-305 | DOI | MR | Zbl
[9] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | Zbl
[10] The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, 2010 | DOI | Zbl
[11] Divisors on symmetric products of curves, Trans. Am. Math. Soc., Volume 337 (1993) no. 1, pp. 117-128 | DOI | MR | Zbl
[12] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48, Springer, 2004 | DOI | Zbl
[13] Semistable sheaves on projective varieties and their restriction to curves, Math. Ann., Volume 258 (1981) no. 3, pp. 213-224 | DOI | MR | Zbl
[14] The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1985, pp. 449-476 | DOI | MR | Zbl
[15] On the nef cone of symmetric products of a generic curve, Am. J. Math., Volume 125 (2003) no. 5, pp. 1117-1135 | DOI | MR | Zbl
[16] On parametrized rational curves in Grassmann varieties, Space curves (Rocca di Papa, 1985) (Lecture Notes in Mathematics), Volume 1266, Springer, 1985, pp. 251-272 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique