Comptes Rendus
Functional Analysis
Convex maps on n and positive definite matrices
Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 645-649.

We obtain several convexity statements involving positive definite matrices. In particular, if A,B,X,Y are invertible matrices and A,B are positive, we show that the map

(s,t)TrlogX * A s X+Y * B t Y

is jointly convex on 2 . This is related to some exotic matrix Hölder inequalities such as

sinh i=1 m A i B i sinh i=1 m A i p 1/p sinh i=1 m B i q 1/q

for all positive matrices A i ,B i , such that A i B i =B i A i , conjugate exponents p,q and unitarily invariant norms ·. Our approach to obtain these results consists in studying the behaviour of some functionals along the geodesics of the Riemanian manifold of positive definite matrices.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.25
Classification: 47A30, 15A60

Jean-Christophe Bourin 1; Jingjing Shao 2

1 Laboratoire de mathématiques, Université de Franche-Comté, 25000 Besançon, France
2 College of Mathematics and Statistic Sciences, Ludong University, Yantai 264001, China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_6_645_0,
     author = {Jean-Christophe Bourin and Jingjing Shao},
     title = {Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {645--649},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {6},
     year = {2020},
     doi = {10.5802/crmath.25},
     language = {en},
}
TY  - JOUR
AU  - Jean-Christophe Bourin
AU  - Jingjing Shao
TI  - Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 645
EP  - 649
VL  - 358
IS  - 6
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.25
LA  - en
ID  - CRMATH_2020__358_6_645_0
ER  - 
%0 Journal Article
%A Jean-Christophe Bourin
%A Jingjing Shao
%T Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices
%J Comptes Rendus. Mathématique
%D 2020
%P 645-649
%V 358
%N 6
%I Académie des sciences, Paris
%R 10.5802/crmath.25
%G en
%F CRMATH_2020__358_6_645_0
Jean-Christophe Bourin; Jingjing Shao. Convex maps on $\protect \mathbb{R}^n$ and positive definite matrices. Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 645-649. doi : 10.5802/crmath.25. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.25/

[1] T. Ando Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., Volume 26 (1979), pp. 203-241 | DOI | MR | Zbl

[2] Rajendra Bhatia Matrix Analysis, Graduate Texts in Mathematics, 169, Springer, 1996 | Zbl

[3] Rajendra Bhatia Positive Definite Matrices, Princeton Series in Applied Mathematics, Princeton University Press, 2007 | Zbl

[4] Jean-Christophe Bourin; Eun-Young Lee Matrix inequalities from a two variables functional, Int. J. Math., Volume 27 (2016) no. 9, 16500771, 19 pages | MR | Zbl

[5] Constantin P. Niculescu Convexity according to the geometric mean, Math. Inequal. Appl., Volume 3 (2000) no. 2, pp. 155-167 | MR | Zbl

Cited by Sources:

Comments - Policy