We consider a semi-periodic two-dimensional Schrödinger operator which is cut at an angle. When the cut is commensurate with the periodic lattice, the spectrum of the operator has the band-gap Bloch structure. We prove that in the incommensurable case, there are no gaps: the gaps of the bulk operator are filled with edge spectrum.
Révisé le :
Accepté le :
Publié le :
David Gontier 1

@article{CRMATH_2021__359_8_949_0, author = {David Gontier}, title = {Spectral properties of periodic systems cut at an angle}, journal = {Comptes Rendus. Math\'ematique}, pages = {949--958}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {8}, year = {2021}, doi = {10.5802/crmath.251}, language = {en}, }
David Gontier. Spectral properties of periodic systems cut at an angle. Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 949-958. doi : 10.5802/crmath.251. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.251/
[1] Spectral asymmetry and Riemannian geometry. III, Math. Proc. Camb. Philos. Soc., Volume 79 (1976) no. 1, pp. 71-99 | DOI | MR | Zbl
[2] Almost periodic Schrödinger operators II. The integrated density of states, Duke Math. J., Volume 50 (1983) no. 1, pp. 369-391 | DOI | Zbl
[3] Déterminant relatif et la fonction Xi, Am. J. Math., Volume 124 (2002) no. 2, pp. 307-352 | DOI | MR | Zbl
[4] Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Commun. Math. Phys., Volume 34 (1973) no. 4, pp. 251-270 | DOI | Zbl
[5] Scattering theory for systems with different spatial asymptotics on the left and right, Commun. Math. Phys., Volume 63 (1978) no. 3, pp. 277-301 | DOI | MR | Zbl
[6] Edge states for second order elliptic operators (2021) | arXiv
[7] Spectral properties of grain boundaries at small angles of rotation, J. Spectr. Theory, Volume 1 (2011), pp. 197-219 | DOI | MR | Zbl
[8] A variational approach to dislocation problems for periodic Schrödinger operators, J. Math. Anal. Appl., Volume 381 (2011) no. 1, pp. 166-178 | DOI | Zbl
[9] Dislocation problems for periodic Schrödinger operators and mathematical aspects of small angle grain boundaries, Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, Springer, 2012, pp. 421-432 | DOI | Zbl
[10] Bound states for nano-tubes with a dislocation, J. Math. Anal. Appl., Volume 431 (2015) no. 1, pp. 202-227 | DOI | MR | Zbl
[11] Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer, 2013 | Zbl
[12] Self-adjoint Fredholm operators and spectral flow, Can. Math. Bull., Volume 39 (1996) no. 4, pp. 460-467 | DOI | MR | Zbl
[13] Methods of Modern Mathematical Physics Vol. I: Functional analysis, Academic Press Inc., 1972 | DOI | Zbl
[14] Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press Inc., 1977 | Zbl
[15] Methods of Modern Mathematical Physics. III, Scattering Theory, Academic Press Inc., 1978 | Zbl
[16] Schrödinger semigroups, Bull. Am. Math. Soc., Volume 7 (1982) no. 3, pp. 447-526 | DOI | Zbl
- Edge states for tight-binding operators with soft walls, Communications in Mathematical Physics, Volume 406 (2025) no. 7, p. 47 (Id/No 160) | DOI:10.1007/s00220-025-05326-1 | Zbl:8055622
- Discrete honeycombs, rational edges, and edge states, Communications on Pure and Applied Mathematics, Volume 77 (2024) no. 3, pp. 1575-1634 | DOI:10.1002/cpa.22141 | Zbl:7793233
- Guided modes in a hexagonal periodic graph like domain, Multiscale Modeling Simulation, Volume 22 (2024) no. 3, pp. 1196-1245 | DOI:10.1137/23m1600177 | Zbl:7950207
- Edge states for second order elliptic operators in a channel, Journal of Spectral Theory, Volume 12 (2022) no. 3, pp. 1155-1202 | DOI:10.4171/jst/430 | Zbl:1514.35295
Cité par 4 documents. Sources : zbMATH
Commentaires - Politique