A theorem characterizing analytically balls in the Euclidean space
Révisé le :
Accepté le :
Publié le :
Nikolay Kuznetsov 1

@article{CRMATH_2021__359_8_945_0, author = {Nikolay Kuznetsov}, title = {Characterization of balls via solutions of the modified {Helmholtz} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {945--948}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {8}, year = {2021}, doi = {10.5802/crmath.250}, language = {en}, }
Nikolay Kuznetsov. Characterization of balls via solutions of the modified Helmholtz equation. Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 945-948. doi : 10.5802/crmath.250. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.250/
[1] The volume mean-value property of harmonic functions, Complex Variables, Theory Appl., Volume 13 (1990) no. 3-4, pp. 185-193 | DOI | MR | Zbl
[2] On the mean-value property of harmonic functions, Proc. Am. Math. Soc., Volume 13 (1962), p. 830 | MR | Zbl
[3] Inverse mean value property of harmonic functions, Math. Ann., Volume 297 (1993) no. 1, pp. 147-156 corrigendum in ibid. 303 (1995), no. 2, p.373-375 | DOI | MR | Zbl
[4] A converse of the mean value theorem for harmonic functions, Russ. Math. Surv., Volume 36 (1981) no. 5, pp. 159-160 | MR
[5] On the mean value property of harmonic functions, Bull. Lond. Math. Soc., Volume 4 (1972), pp. 311-312 | DOI | MR | Zbl
[6] Mean value properties of solutions to the Helmholtz and modified Helmholtz equations (2021) (to appear in Russian) | arXiv | Zbl
[7] Metaharmonic functions: mean flux theorem, its converse and related properties, Algebra Anal., Volume 33 (2021), pp. 82-97 | MR
[8] Mean value property and harmonic functions, Classical and modern potential theory and applications (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 430, Kluwer Academic Publishers, 1994, pp. 359-398 | DOI | MR | Zbl
[9] Allgemeine Untersuchungen über das Newton’sche Princip der Fernwirkungen, Teubner, 1896 | Zbl
[10] Special Functions of Mathematical Physics: A Unified Introduction with Applications, Birkhäuser, 1988 | Zbl
[11] Generalizations of the Gauss law of the spherical mean, Trans. Am. Math. Soc., Volume 43 (1938), pp. 199-225 | DOI | MR | Zbl
[12] A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1944 | Zbl
Cité par Sources :
Commentaires - Politique